Ôn thi học sinh giỏi môn Toán Lớp 8 - Dạng 5: Phân tích đa thức thành nhân tử (Có lời giải)

docx 55 trang Thu Mai 10461
Bạn đang xem 20 trang mẫu của tài liệu "Ôn thi học sinh giỏi môn Toán Lớp 8 - Dạng 5: Phân tích đa thức thành nhân tử (Có lời giải)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docxon_thi_hoc_sinh_gioi_mon_toan_lop_8_dang_5_phan_tich_da_thuc.docx

Nội dung text: Ôn thi học sinh giỏi môn Toán Lớp 8 - Dạng 5: Phân tích đa thức thành nhân tử (Có lời giải)

  1. DẠNG 5: PHÂN TÍCH ĐA THỨC THÀNH NHÂN TỬ A.Bài toán Bài 1: Phân tích các đa thức sau thành nhân tử: a) x y z 3 x3 y3 z3 b)x4 2010x2 2009x 2010 Bài 2: Phân tích đa thức sau thành nhân tử: A a 1 a 3 a 5 a 7 15 Bài 3: Phân tích các đa thức ra thừa số: a) x4 4 b) x 2 x 3 x 4 x 5 24 Bài 4: Phân tích đa thức sau thành nhân tử: x4 2019x2 2018x 2019. Bài 5: Phân tích các đa thức thành nhân tử: a) x3 y3 z3 3xyz b) x4 2011x2 2010x 2011 Bài 6: Phân tích các đa thức sau thành nhân tử a) x4 4 b) x 2 x 3 x 4 x 5 24 Bài 7: Phân tích đa thức thành nhân tử: a) x3 x2 14x 24 b) x4 2018x2 2017x 2018 Bài 8: Phân tích đa thức a2 b c b2 c a c2 a b thành nhân tử Bài 9: Phân tích các đa thức sau thành nhân tử: a) x5 x 1 ; b) x5 x4 1 c) x8 x 1 ; d) x8 x7 1 3 3 3 Bài 10: Phân tích đa thức sau thành nhân tử: a x y a y x x y a Bài 11: Phân tích đa thức thành nhân tử: 2a2b 4ab2 a2c ac2 4b2c 2bc2 4abc . Bài 12: Phân tích thành nhân tử: a) a b c 2 a b c 2 4b2 ; b) a b2 c2 b c2 a2 c a2 b2 3 3 3 c) a2 b2 c2 a2 b2 c2 Bài 13: Phân tích các đa thức sau thành nhân tử: 2 2 a) x2 x 2 x2 x 15 ; b) x2 2x 9x2 18x 20 ; c) x2 3x 1 x2 3x 2 6 ; d) x2 8x 7 x 3 x 5 15 Bài 14: Phân tích các đa thức thành nhân tử: 2 a) x2 4x 8 3x x2 4x 8 2x2 ; b) x2 2xy y2 x y 12 4 3 2 Bài 15: Cho đa thức P x 2x 7x 2x 13x 6 a) Phân tích P x thành nhân tử b) Chứng minh rằng P x 6 với mọi x Z . Bài 16: Phân tích các đa thức thành nhân tử: a) 4x4 4x3 5x2 2x 1 ; b) 3x4 11x3 7x2 2x 1
  2. Bài 17: Cho đa thức E x4 2017x2 2016x 2017 . a) Phân tích đa thức E thành nhân tử; b) Tính giá trị của E với x là nghiệm của phương trình: x2 x 1 1 . Bài 18: Phân tích đa thức a2 b c b2 c a c2 a b thành nhân tử Bài 19: Phân tích đa thức sau đây thành nhân tử: 1.x2 7x 6 2.x4 2008x2 2007x 2008 Bài 20: Phân tích đa thức sau đây thành nhân tử: Phân tích các đa thức sau thành nhân tử: 3 a) x y z x3 y3 z3 ; b) x4 2010x2 2009x 2010 Bài 21: Phân tích đa thức x3 5x2 8x 4 thành nhân tử Bài 22: Phân tích đa thức thành nhân tử a)x4 1 2x2 b) x2 28x 27 Bài 23: Phân tích đa thức sau thành nhân tử : x x 2 x2 2x 2 1 Bài 24: Phân tích các đa thức sau thành nhân tử a) x4 4 b) x 2 x 3 x 4 x 5 24 Bài 25: Phân tích đa thức thành nhân tử: x2 2x x2 2x 1 6 Bài 26: Phân tích các đa thức thành nhân tử: a) x3 y3 z3 3xyz b) x4 2011x2 2010x 2011 Bài 27: Phân tích đa thức sau thành nhân tử: x4 2019x2 2018x 2019 Bài 28: Phân tích đa thức thành nhân tử: P x2 (y z) y2.(z x) z2.(x y) Bài 29: Phân tích đa thức sau thành nhân tử : x2 2xy y2 4x 4y 5 Bài 30: Phân tích đa thức x3 5x2 8x 4 thành nhân tử Bài 31: Phân tích đa thức thành nhân tử: a)x2 y2 5x 5y b)2x2 5x 7 Bài 32: Phân tích đa thức sau đây thành nhân tử: 1.x2 7x 6 2.x4 2008x2 2007x 2008 Bài 33: Phân tích các đa thức sau thành nhân tử: a)x2 6xy 9y2 49 b)x2 6x 5 Bài 34: Phân tích đa thức thành nhân tử: a) x3 x2 14x 24 b) x4 2018x2 2017x 2018
  3. Bài 35: Phân tích đa thức sau thành nhân tử: x4 2013x2 2012x 2013 Bài 36: Phân tích đa thức sau thành nhân tử: x2 x4 1 x2 2 1 Bài 37: Phân tích đa thức sau thành nhân tử: x3 2x2 x 2 Bài 38: Phân tích đa thức thành nhân tử: A x4 2007x2 2006x 2007 Bài 39: Phân tích đa thức sau thành nhân tử: x(x + 4)(x + 6)(x + 10) + 128. 2 Bài 40: Phân tích đa thức sau thành nhân tử: x3. x2 7 36x Dựa vào kết quả trên hãy chứng minh: A n3. n2 7 36n chia hết cho 210 với mọi số tự nhiên n Bài 41: Phân tích đa thức thành nhân tử: x3 19x 30 Bài 42: Phân tích đa thức A a3 b3 c3 3abc thành nhân tử. Từ đó suy ra điều kiện của a,b,c để a3 b3 c3 3abc . Bài 43: Phân tích đa thức a2 b c b2 c a c2 a b thành nhân tử Bài 44: 1) Chứng minh : x y x3 x2 y xy2 y3 x4 y4 2) Phân tích đa thức thành nhân tử: x x 2 x2 2x 2 1 3) Tìm a,b,c biết: a2 b2 c2 ab bc ac và a8 b8 c8 3 Bài 45: Cho a3 b3 c3 3abc với a,b,c 0 a b c Tính giá trị biểu thức P 1 1 1 b c a Bài 46: xyz Cho x3 y3 z3 3xyz. Hãy rút gọn phân thức : P x y y z z x Bài 47: 1 1 1 yz xz xy Cho 0, tính giá trị của biểu thức P x y z x2 y2 z2 Bài 48: a) Cho a b c 0. Chứng minh rằng a3 b3 c3 3abc 1 1 1 b) Cho 0, (với x 0; y 0; z 0) x y z yz xz xy Tính giá trị của biểu thức x2 y2 z2 Bài 49: Tìm x,y,z biết: 10x2 y2 4z2 6x 4y 4xz 5 0 Bài 50: Cho a và b thỏa mãn : a b 1. Tính giá trị của biểu thức B a3 b3 3ab Bài 51: Phân tích đa thức sau thành nhân tử:
  4. a4 b c b4 c a c4 a b Bài 52: Phân tích các đa thức sau thành nhân tử 2 1. 8 x2 3x 5 7 x2 3x 5 15 2. x11 x7 1 Bài 53: Phân tích đa thức sau đây thành nhân tử: 1.x2 7x 6 2.x4 2008x2 2007x 2008 1 1 1 yz zx xy Bài 54: a) Cho 0.Tính giá trị của biểu thức sau: B . x y z x2 y2 z2 b) Cho x, y, z là ba số thực khác 0, thỏa mãn x y z 0 và x3 y3 z3 3xyz . x2019 y2019 z2019 Tính C . x y z 2019 Bài 55: 2 a) Cho a,b,c là ba số đôi một khác nhau thỏa mãn: a b c a2 b2 c2 a2 b2 c2 Tính giá trị của biểu thức: P a2 2bc b2 2ac c2 2ab b) Cho x y z 0. Chứng minh rằng: 2 x5 y5 z5 5xyz x2 y2 z2 Bài 56: Phân tích đa thức thành nhân tử: x2 2x x2 2x 1 6 Bài 57: Cho x by cz; y ax cz; z ax by và x y z 0; xyz 0 . 1 1 1 CMR: 2 1 a 1 b 1 c Bài 58: Phân tích đa thức sau thành nhân tử: A x3 y3 z3 3xyz Bài 59: Phân tích đa thức sau thành nhân tử: x4 2013x2 2012x 2013 Bài 60: Phân tích đa thức thành nhân tử: M x 2 x 3 x 4 x 5 24 Bài 61: Phân tích biểu thức sau thành nhân tử: P 2a3 7a2 b 7ab2 2b3 Bài 62: Phân tích đa thức thành nhân tử: x3 6x2 11x 6 2 2 2 Bài 63: Phân tích đa thức a b c b c a c a b thành nhân tử Bài 64: Phân tích các đa thức sau thành nhân tử a) x4 4 b) x 2 x 3 x 4 x 5 24 Bài 65: Phân tích biểu thức sau thành nhân tử: P 2a3 7a2b 7ab2 2b3 Bài 66: Phân tích các đa thức sau thành nhân tử: a) x4 2x2 y y2 9 b) x 2 x 3 x 4 x 5 24
  5. Bài 67: Phân tích thành nhân tử: x4 6x2 7x 6 Bài 68: Phân tích đa thức sau thành nhân tử: A a 1 a 3 a 5 a 7 15 Bài 69: Phân tích đa thức thành nhân tử a)x4 1 2x2 b) x2 28x 27 Bài 70: Phân tích đa thức sau đây thành nhân tử: 1.x2 7x 6 2.x4 2008x2 2007x 2008 Bài 71: Phân tích đa thức x3 5x2 8x 4 thành nhân tử Bài 72: Phân tích đa thức thành nhân tử a) x2 y2 5x 5y b) 2x2 5x 7 Bài 73: Phân tích các đa thức sau thành nhân tử: A = x3 2019x2 2019x 2018 Bài 74: Phân tích thành nhân tử P = a8 + a4b4 + b8 Bài 75: Phân tích các đa thức sau thành nhân tử: a) 3x(x 2) 5x 10 . b) x3 5x2 8x 4 . Bài 76: Bài 7: Phân tích các đa thức sau thành nhân tử: a) 7x2 7xy 5x 5y . b) x4 2013x2 2012x 2013. Bài 77: Phân tích các đa thức sau thành nhân tử: a) a4 + 8a3 + 14a2 - 8a -15 b) 4a2b2 - (a2 + b2 - c2)2 Bài 78: Phân tích các đa thức sau thành nhân tử: a, x(x 2)(x2 2x 2) 1 b, x4 2016x2 2015x 2016 Bài 79: Phân tích các đa thức sau thành nhân tử: a) x3 – 4x b) x3 – 5x2 + 8x – 4 Bài 80: Phân tích đa thức sau thành nhân tử: A (x 1)(x 2)(x 3)(x 4) 144 Bài 81: Phân tích các đa thức sau thành nhân tử a) x4 4 b) x 2 x 3 x 4 x 5 24 Bài 82: Phân tích đa thức sau thành nhân tử : x4 + 2013x2 + 2012x + 2013 Bài 83: Phân tích đa thức thành nhân tử: M = (x+2)(x+3)(x+4)(x+5) – 24 Bài 84: Phân tích biểu thức sau thành nhân tử: P = 2a3 + 7a2b + 7ab2 +2b3 Bài 85: Phân tích đa thức thành nhân tử: x3 – 6x2 + 11x – 6 Bài 86: Phân tích đa thức a2(b – c) + b2(c – a) + c2(a – b) thành nhân tử 2 2 Bài 87: Phân tích đa thức sau thành nhân tử : x 2xy y 4x 4y 5 Bài 88: Phân tích đa thức sau thành nhân tử: x4 2013x2 2012x 2013 Bài 89: Phân tích các đa thức sau thành nhân tử: 1) a x2 1 x a2 1 2) 6x3 13x2 4x 3
  6. 2 3) x2 x 2 x2 x 15 Bài 90: Phân tích đa thức x3 5x2 8x 4 thành nhân tử Bài 91: Cho x y 1và xy 0.Chứng minh rằng: x y 2 x y 0 y3 1 x3 1 x2 y2 3 Bài 92: Gọi a,b,clà độ dài ba cạnh của tam giác thỏa mãn a3 b3 c3 3abc.Chứng minh tam giác đều 2 Bài 93: Phân tích đa thức sau thành nhân tử: x3 x2 7 36x Bài 94: Cho ba số a,b,cthỏa mãn abc 2004 2004a b c Tính M ab 2004a 2004 bc b 2004 ac c 1 Bài 95: Phân tích các đa thức thành nhân tử: c) x3 y3 z3 3xyz d) x4 2011x2 2010x 2011 Bài 96: Phân tích đa thức thành nhân tử a)x4 1 2x2 b) x2 28x 27 Bài 97: Phân tích đa thức sau thành nhân tử : x x 2 x2 2x 2 1 Bài 98: 2 Cho biểu thức A b2 c2 a2 4b2c2 a) Phân tích biểu thức Athành nhân tử b) Chứng minh rằng: Nếu a,b,clà độ dài các cạnh của một tam giác thì A 0 Bài 99: Phân tích các đa thức sau thành nhân tử: a) x y z 3 x3 y3 z3 b)x4 2010x2 2009x 2010 Bài 100: Phân tích các đa thức sau thành nhân tử c) x4 4 d) x 2 x 3 x 4 x 5 24
  7. Bài 101: hân tích đa thức sau thành nhân tử: A a 1 a 3 a 5 a 7 15 Bài 102: Với giá trị nào của a và b thì đa thức x a x 10 1 phân tích thành tích của một đa thức bậc nhất có hệ số nguyên Bài 103: Phân tích các đa thức sau thành nhân tử: a)3x2 7x 2 b) a x2 1 x a2 1 Bài 104: Phân tích đa thức sau thành nhân tử: a4 b c b4 c a c4 a b Bài 105: Phân tích đa thức thành nhân tử: a) x2 x 6 b) x3 x2 14x 24 Bài 106: Phân tích đa thức thành nhân tử: x x 2 x2 2x 2 1 Bài 107: Phân tích các đa thức sau thành nhân tử a) x4 + 4 b) (x + 2)(x + 3)(x + 4)(x + 5) - 24 Bài 108: Phân tích đa thức sau thành nhân tử: ab a b bc b c ca c a 2abc Bài 109: Phân tích đa thức sau thành nhân tử: x4 2013x2 2012x 2013 Bài 110: Phân tích các đa thức sau thành nhân tử: a) a3 – a2 – 4a + 4 b) 2a3 – 7a2b + 7ab2 + 2b3 2 2 2 Bài 111: Phân tích đa thức a b c b c a c a b thành nhân tử x2 2x x2 2x 1 6 Bài 112: Phân tích đa thức thành nhân tử: Bài 113: Phân tích các đa thức sau thành nhân tử: a) 12x3 16x2 5x 3 2 b) x2 x 1 5x x2 x 1 4x2 Bài 114: Phân tích các đa thức thành nhân tử: 8 a) 18x3 x 25 b) a a 2b 3 b 2a b 3 c) x 2 x 3 x 4 x 5 1 Bài 115: Phân tích thành nhân tử: a) a2 7a 12 4 2 b) x 2015x 2014x 2015 c) x3 y3 z3 3xyz 2 d) x2 8 36 Bài 116: Phân tích các đa thức sau thành nhân tử: a) 5x2 26x 24 1 3 3 2 3 b) x x x 1 8 4 2 c) x2 6x 5
  8. 4 2 d) x 2015x 2014x 2015 Bài 117: Phân tích các đa thức sau thành nhân tử: 2 a) 8 x2 3x 5 7 x2 3x 5 15 b) x11 x7 1 x2 a 1 a a2 x2 1 Bài 118: Rút gọn biểu thức: x2 a 1 a a2 x2 1 x2 2x 2x2 1 2 Bài 119: Cho biểu thức A 2 2 3 . 1 2 2x 8 8 4x 2x x x x a) Tìm ĐKXĐ và rút gọn A b) Tìm các số nguyên x để biểu thức Anhận giá trị nguyên. Bài 120: Phân tích đa thức sau thành nhân tử: x2. x4 1 x2 2 1 Bài 121: x2 x x 1 1 2 x2 Cho biểu thức P 2 : 2 x 2x 1 x x 1 x x a) Tìm ĐKXĐ và rút gọn P 1 b) Tìm x để P 2 c) Tìm giá trị nhỏ nhất của P khi x 1 Bài 122: Phân tích đa thức sau thành nhân tử: A x3 y3 z3 3xyz Bài 123: Phân tích các đa thức sau thành nhân tử a) x3 – 9x b) 4x2 – 3x – 1 c) ab( a - b) + bc( b- c) + ca( c- a) a2 4a 4 Bài 124: Cho A = a3 2a 4a 8 a) Rút gọn A b) Tìm số nguyên a để A là số nguyên x 3 3x x 4 A 2 3 Bài 125: Cho biểu thức x 1 x x 1 x 1 a) Rút gọn biểu thức A b) Chứng minh rằng giá trị của Aluôn dương với mọi x 1 Bài 126: Phân tích thành nhân tử: a) a3 2a2 13a 10 2 b) a2 4b2 5 16 ab 1 2 2x 9 x 3 2x 4 A 2 Bài 127: Cho biểu thức x 5x 6 x 2 3 x a) Rút gọn biểu thức A b) Tìm x để Anhận giá trị là một số nguyên
  9. Bài 128: Phân tích đa thức sau thành nhân tử : x20 x 1 Bài 129: 1. Phân tích đa thức sau thành nhân tử: x4 2013x2 2012x 2013 x2 2x 2x2 1 2 2. Rút gọn biểu thức sau: A 2 2 3 . 1 2 . 2x 8 8 4x 2x x x x Bài 130: Phân tích đa thức thành nhân tử: P x2 y z y2 z x z2 x y x 1 1 2 x3 2x2 Bài 131: Cho biểu thức Q 1 3 2 : 3 2 x 1 x x 1 x 1 x x x a) Rút gọn Q 3 5 b) Tính giá trị của Q biết x 4 4 c) Tìm giá trị nguyên của x để Q có giá trị nguyên Bài 132: 2x 3 2x 8 3 21 2x 8x2 Cho biểu thức P 2 2 : 2 1 4x 12x 5 13x 2x 20 2x 1 4x 4x 3 a) Rút gọn P 1 b) Tính giá trị của P khi x 2 c) Tìm giá trị nguyên của x để P nhận giá trị nguyên d) Tìm x để P 0 Bài 133: Cho biểu thức 1 2 5 x 1 2x A 2 : 2 1 x x 1 1 x x 1 a) Rút gọn biểu thức A b) Tìm các giá trị nguyên của x để biểu thức Anhận giá trị nguyên c) Tìm x để A A Bài 134: Phân tích các đa thức sau thành nhân tử: 1)x2 2014x 2013 2)x(x 2)(x2 2x 2) 1 Bài 135: a) Phân tích đa thức sau thành nhân tử: x4 2013x2 2012x 2013 x2 2x 2x2 1 2 b) Rút gọn biểu thức sau: A 2 2 3 . 1 2 . 2x 8 8 4x 2x x x x Bài 136: a) Phân tích đa thức sau thành nhân tử: A x3 y3 z3 3xyz 1 1 4 b) Chứng minh rằng: a,b 0 a b a b Bài 137: Cho biểu thức: x2 6 1 10 x2 M 3 : x 2 x 4x 6 3x x 2 x 2
  10. a) Rút gọn M b) Tính giá trị của biểu thức M khi x 1 c) Với giá trị nào của x thì M 2 d) Tìm giá trị nguyên của x để M có giá trị nguyên. a3 4a2 a 4 Bài 138: Rút gọn biểu thức: P a3 7a2 14a 8 x2 a 1 a a2 x2 1 Bài 139: Rút gọn biểu thức: x2 a 1 a a2 x2 1 Bài 140: Phân tích các đa thức sau thành nhân tử a) x4 4 b) x 2 x 3 x 4 x 5 24
  11. B. HƯỚNG DẪN Bài 1: Phân tích các đa thức sau thành nhân tử: a) x y z 3 x3 y3 z3 b)x4 2010x2 2009x 2010 Lời giải a) x y z 3 x3 y3 z3 x y z 3 x3 y3 z3 y z x y z 2 x y z x x2 y z y2 yz z2 2 y z 3x 3xy 3yz 3zx 3 y z x x y z x y 3 x y x z y z b) x4 2010x2 2009x 2010 x4 x 2010x2 2010x 2010 x x 1 x2 x 1 2010 x2 x 1 x2 x 1 x2 x 2010 Bài 2: Phân tích đa thức sau thành nhân tử: A a 1 a 3 a 5 a 7 15 Lời giải A a 1 a 3 a 5 a 7 15 (a 1)(a 7)(a 3)(a 5) 15 a2 8a 7 a2 8a 15 15 2 a2 8a 22 a2 8a 120 2 a2 8a 11 12 a2 8a 12 a2 8a 10 a 2 a 6 a2 8a 10 Bài 3: Phân tích các đa thức ra thừa số: a) x4 4 b) x 2 x 3 x 4 x 5 24 Lời giải 2 x4 4 x4 4x2 4 4x2 x2 2 2x 2 x2 2x 2 x2 2x 2 x 2 x 3 x 4 x 5 24 x2 7x 11 1 x2 7x 11 1 24 2 x2 7x 11 1 24 2 x2 7x 11 52 x2 7x 6 x2 7x 16 x 1 x 2 x2 7x 16
  12. Bài 4: Phân tích đa thức sau thành nhân tử: x4 2019x2 2018x 2019. Lời giải x4 2019x2 2018x 2019. x4 x2 2018x2 2018x 2018 1 x3 – x3 x4 x3 x2 2018x2 2018x 2018 – x3 1 x2 x2 x 1 2018 x2 x 1 – x – 1 x2 x 1 x2 x 1 x2 2018 – x 1 x2 x 1 x2 – x 2019 Bài 5: Phân tích các đa thức thành nhân tử: e) x3 y3 z3 3xyz f) x4 2011x2 2010x 2011 Lời giải a / x3 y3 z3 3xyz x y 3 3xy x y z3 3xyz x y z 3 3z x y x y z 3xy x y z x y z x y z 2 3z x y 3xy 2 2 2 x y z x y z 2xy 2yzz 2xz 3zx 3zy 3xy x y z x2 y2 z2 xy yz zx b / x4 2011x2 2010x 2011 x4 x3 x2 2010x2 2010x 2010 x3 1 x2 x2 x 1 2010 x2 x 1 x 1 x2 x 1 x2 x 1 x2 2010 x 1 x2 x 1 x2 x 2011 Bài 6: Phân tích các đa thức sau thành nhân tử e) x4 4 f) x 2 x 3 x 4 x 5 24 Lời giải a. x4 4 x4 4x2 4 4x2 2 x4 4x2 4 2x 2 x2 2 2x 2 x2 2x 2 x2 2x 2 b. x 2 x 3 x 4 x 5 24 x2 7x 11 1 x2 7x 11 1 24 2 x2 7x 11 1 24 2 x2 7x 11 52 x2 7x 6 x2 7x 16 x 1 x 6 x2 7x 16
  13. Bài 7: Phân tích đa thức thành nhân tử: b) x3 x2 14x 24 b) x4 2018x2 2017x 2018 Lời giải a)x3 x2 14x 24 x3 2x2 x2 2x 12x 24 x2 x 2 x x 2 12 x 2 x2 x 12 x 2 x 2 x 3 x 4 b)x4 2018x2 2017x 2018 x4 2017x2 x2 2017x 2017 1 x4 x2 1 2017 x2 x 1 x2 x 1 x2 x 1 2017 x2 x 1 x2 x 1 x2 x 2018 Bài 8: Phân tích đa thức a2 b c b2 c a c2 a b thành nhân tử Lời giải a2 b c b2 c a c2 a b a2 b c b2 a c c2 a b 2 2 2 a b c b a b b c c a b a2 b2 b c c2 b2 a b a b a b b c b c b c a b a b b c a b b c a b b c a c Bài 9: Phân tích các đa thức sau thành nhân tử: a) x5 x 1 ; b) x5 x4 1 c) x8 x 1 ; d) x8 x7 1 Lời giải : a) Ta có: x5 x 1 x5 x2 x2 x 1 x2 x3 1 x2 x 1 x2 x 1 x2 x 1 x2 x 1 x2 x 1 x3 x2 1 b) Ta có: x5 x4 1 x5 x4 x3 x3 1 x3 x2 x 1 x 1 x2 x 1 x2 x 1 x3 x 1 c) Ta có: x8 x 1 x8 x2 x2 x 1 x2 x6 1 x2 x 1 x2 x3 1 x 1 x2 x 1 x2 x 1 x2 x 1 x6 x5 x3 x2 1 d) Ta có: x8 x7 1 x8 x2 x7 x x2 x 1 x2 x3 1 x 1 x2 x 1 x x3 1 x 1 x2 x 1 x2 x 1 x2 x 1 x6 x4 x3 x 1 .
  14. 3 3 3 Bài 10: Phân tích đa thức sau thành nhân tử: a x y a y x x y a Lời giải : Ta có: a x y3 a y x3 x y a3 3 3 3 a x y a x x y x x y a a x y3 a x x3 x y x3 x y a3 a x y3 x3 a3 x3 x y x a x y x2 xy y2 x a x2 ax a2 x y x a x y x2 xy y2 x2 ax a2 x y x a y2 ax a2 xy x y x a x y a y a y a x y x a y a x y a Bài 11: Phân tích đa thức thành nhân tử: 2a2b 4ab2 a2c ac2 4b2c 2bc2 4abc . 2a2b 4ab2 a2c ac2 4b2c 2bc2 4abc Lời giải : Ta có : 2a2b 4ab2 a2c 2abc ac2 2bc2 4b2c 2abc 2ab a 2b ac a 2b c2 a 2b 2bc a 2b a 2b 2ab ac c2 2bc a 2b a 2b c c 2b c a 2b 2b c c a Bài 12: Phân tích thành nhân tử: a) a b c 2 a b c 2 4b2 ; b) a b2 c2 b c2 a2 c a2 b2 3 3 3 c) a2 b2 c2 a2 b2 c2 Lời giải : Ta có : a) a b c 2 a b c 2 4b2 a b c 2 a b c 2b a b c 2b 2 a b c a b c a 3b c a b c a b c a 3b c 2 a b c a b c b) a b2 c2 b c2 a2 c a2 b2 ab2 ac2 bc2 ab2 ac2 b2c ab a b c2 a b c a b a b a b ab c2 ca cb a b b c a c 3 3 3 3 3 3 c) a2 b2 c2 a2 b2 c2 a2 b2 c2 a2 b2 c2 Bài 13: Phân tích các đa thức sau thành nhân tử: 2 2 a) x2 x 2 x2 x 15 ; b) x2 2x 9x2 18x 20 ; c) x2 3x 1 x2 3x 2 6 ; d) x2 8x 7 x 3 x 5 15 Lời giải : 2 a) x2 x 2 x2 x 15 Đặt x2 x y , ta có: y2 2y 15 y 5 y 3
  15. 2 Vậy, x2 x 2 x2 x 15 x2 x 5 x2 x 3 2 b) x2 2x 9x2 18x 20 Đặt x2 2x y , ta có: y2 9y 20 y 4 y 5 2 Vậy, x2 2x 9x2 18x 20 x2 2x 4 x2 2x 5 c) x2 3x 1 x2 3x 2 6 Đặt x2 3x 1 y , ta có: y2 y 6 y 2 y 3 Vậy, x2 3x 1 x2 3x 2 6 x2 3x 1 x2 3x 4 d) x2 8x 7 x 3 x 5 15 Đặt x2 8x 7 y , ta có: y2 8y 15 y 3 y 5 Vậy, x2 8x 7 x 3 x 5 15 x2 8x 10 x2 8x 12 Bài 14: Phân tích các đa thức thành nhân tử: 2 a) x2 4x 8 3x x2 4x 8 2x2 ; b) x2 2xy y2 x y 12 Lời giải : 2 a) x2 4x 8 3x x2 4x 8 2x2 ; Đặt x2 4x 8 y ta được: 2 x2 4x 8 3x x2 4x 8 2x2 y2 3xy 2x2 y2 2xy x2 xy x2 y x y 2x x2 5x 8 x 2 x 4 2 Vậy, x2 4x 8 3x x2 4x 8 2x2 x2 5x 8 x 2 x 4 b) x2 2xy y2 x y 12 Ta có: x2 2xy y2 x y 12 x y 2 x y 12 x y 3 x y 4 Vậy, x2 2xy y2 x y 12 x y 3 x y 4 . Bài 15: Cho đa thức P x 2x4 7x3 2x2 13x 6 a) Phân tích P x thành nhân tử b) Chứng minh rằng P x 6 với mọi x Z Lời giải : a) Ta có : P x 2x4 7x3 2x2 13x 6 2x4 6x3 x3 3x2 5x2 15x 2x 6 2x3 x 3 x2 x 3 5x x 3 2 x 3 x 3 2x3 x2 5x 2 x 3 2x3 4x2 3x2 6x x 2 2 x 3 2x x 2 3x x 2 x 2 x 3 x 2 2x2 3x 1 x 3 x 2 2x2 2x x 1
  16. x 3 x 2 2x x 1 x 1 x 3 x 2 x 1 2x 1 b)Chứng minh rằng P x 6 với mọi x Z . Ta có: P x 3 x 2 x 1 2x 1 x 3 x 2 x 1 2x 2 3 2 x 3 x 2 x 1 x 1 3 x 3 x 2 x 1 Vì x 3 , x 2 là hai số nguyên liên tiếp nên có một số chia hết cho 2 Do đó, 3(1) x 3 x 2 x 1 6 Và x 3 , x 2 , x 1 là ba số nguyên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3 mà UCLN 2,3 1 và 2.3 =6. Suy ra 2(2) x 3 x 2 x 1 x 1 6 Từ (1) và (2) suy ra P x 6 với mọi x Z . Bài 16: Phân tích các đa thức thành nhân tử: a) 4x4 4x3 5x2 2x 1 ; b) 3x4 11x3 7x2 2x 1 Lời giải : a) 4x4 4x3 5x2 2x 1 Ta viết 4x4 4x3 5x2 2x 1 2x2 ax 1 . 2x2 bx 1 với mọi x = 4x4 2a 2b x3 ab 4 x2 a b x 1 Đồng nhất hệ số hai vế, ta được: 2a 2b 4,ab 4 5,a b 2 a 1,b 1 . 2 Vậy, 4x4 4x3 5x2 2x 1 2x2 x 1 . b) 3x4 11x3 7x2 2x 1 Ta viết 3x4 11x3 7x2 2x 1 3x2 cx 1 x2 dx 1 với mọi x 3x4 3dx3 3x2 cx3 cdx2 cx x2 dx 1 3x4 3d c x3 4 cd x2 c d x 1 Đồng nhất hệ số hai vế, ta được: 3d c 11, 4 cd 7,c d 2 c,d .(loại ) Khi đó, ta chọn cách viết khác 3x4 11x3 7x2 2x 1 3x m x3 nx2 px q với mọi x 3x4 3nx3 3px2 3qx mx3 mnx2 mpx mq 3x4 3n m x3 3p mn x2 3q mp x mq Đồng nhất hệ số hai vế ta được 3n m 11, 3p mn 7, 3q mp 2, mq 1 Xét hai trường hợp: +TH1: m q 1 , giải ra được n 4, p 1 ( nhận ) +TH2: m q 1 , giải ra n, p  ( loại ) Vậy, 3x4 11x3 7x2 2x 1 3x 1 x3 4x2 x 1 . Bài 17: Cho đa thức E x4 2017x2 2016x 2017 . Lời giải : E x4 2017x2 2016x 2017 x4 x 2017x2 2017x 2017 x4 x 2017 x2 x 1 x x3 1 2017 x2 x 1 x x 1 x2 x 1 2017 x2 x 1 x2 x 1 x2 x 2017
  17. b) Tính giá trị của E với x là nghiệm của phương trình: x2 x 1 1 . x2 x 1 1 Ta có: x2 x 1 1 2 x x 1 1 2 2 x 0 *) x x 1 1 x x 0 x x 1 0 x 1 2 2 2 1 7 *) x x 1 1 x x 2 0 x 0 (vô nghiệm). 2 4 Vậy với x 0 E 2017 ; x 1 E 6051 . Bài 18: Phân tích đa thức a2 b c b2 c a c2 a b thành nhân tử Lời giải Ta có : a2 b c b2 c a c2 a b a2 b c b2 a c c2 a b 2 2 2 a b c b a b b c c a b a2 b2 b c c2 b2 a b a b a b b c b c b c a b a b b c a b b c a b b c a c Bài 19: Phân tích đa thức sau đây thành nhân tử: 1.x2 7x 6 2.x4 2008x2 2007x 2008 Lời giải Ta có: 1) x2 7x 6 x2 x 6x 6 x x 1 6 x 1 x 6 x 1 2) x4 2008x2 2007x 2008 x4 x2 2007x2 2007x 2007 1 Bài 20: Phân tích đa thức sau đây thành nhân tử: Phân tích các đa thức sau thành nhân tử: 3 a) x y z x3 y3 z3 ; b) x4 2010x2 2009x 2010 x4 x2 1 207 x2 x 1 x2 1 x2 2007 x2 x 1 x2 x 1 x2 x 1 2007 x2 x 1 x2 x 1 x2 x 2008 Lời giải a) Ta có: 3 3 x y z x3 y3 z3 x y z x3 y3 z3 2 y z x y z x y z x x2 y z y2 yz z2 2 y z 3x 3xy 3yz 3zx 3 y z x x y z x y 3 x y x z y z b) Ta có: x4 2010x2 2009x 2010 x4 x 2010x2 2010x 2010 x x 1 x2 x 1 2010 x2 x 1 x2 x 1 x2 x 2010
  18. Bài 21: Phân tích đa thức x3 5x2 8x 4 thành nhân tử Lời giải x3 5x2 8x 4 x3 4x2 4x x2 4x 4 x x2 4x 4 x2 4x 4 2 x 1 x 2 Bài 22: Phân tích đa thức thành nhân tử a)x4 1 2x2 b) x2 28x 27 2 a) x4 1 2x2 x2 1 b) x2 28x 27 x 1 x 27 Bài 23: Phân tích đa thức sau thành nhân tử : x x 2 x2 2x 2 1 Lời giải Ta có: x x 2 x2 2x 2 1 x2 2x x2 2x 2 1 2 x2 2x 2 x2 2x 1 2 4 x2 2x 1 x 1 Bài 24: Phân tích các đa thức sau thành nhân tử g) x4 4 h) x 2 x 3 x 4 x 5 24 Lời giải .a x4 4 x4 4x2 4 4x2 2 2 2 x4 4x2 4 2x x2 2 2x x2 2x 2 x2 2x 2 b. x 2 x 3 x 4 x 5 24 x2 7x 11 1 x2 7x 11 1 24 2 x2 7x 11 1 24 2 x2 7x 11 52 x2 7x 6 x2 7x 16 x 1 x 6 x2 7x 16 Bài 25: Phân tích đa thức thành nhân tử: x2 2x x2 2x 1 6 Lờ giải x2 2x x2 2x 1 6 x 1 x 3 x2 2x 2 = Bài 26: Phân tích các đa thức thành nhân tử: a) x3 y3 z3 3xyz
  19. b) x4 2011x2 2010x 2011 Lời giải 3 a / x3 y3 z3 3xyz x y 3xy x y z3 3xyz 3 x y z 3z x y x y z 3xy x y z 2 x y z x y z 3z x y 3xy 2 2 2 x y z x y z 2xy 2yzz 2xz 3zx 3zy 3xy x y z x2 y2 z2 xy yz zx b / x4 2011x2 2010x 2011 x4 x3 x2 2010x2 2010x 2010 x3 1 x2 x2 x 1 2010 x2 x 1 x 1 x2 x 1 x2 x 1 x2 2010 x 1 x2 x 1 x2 x 2011 Bài 27: Phân tích đa thức sau thành nhân tử: x4 2019x2 2018x 2019 Lời giải x4 2019x2 2018x 2019 x4 x2 2018x2 2018x 2018 1 x3 x3 x4 x3 x2 2018x2 2018x 2018 x3 1 x2 x2 x 1 2018 x2 x 1 x 1 x2 x 1 x2 x 1 x2 2018 x 1 x2 x 1 x2 x 2019 Bài 28: Phân tích đa thức thành nhân tử: P x2 (y z) y2.(z x) z2.(x y) Lời giải x2. y z y2. z x z2 x y x2 y z y2 z y2 x z2 x z2 y x2 y z yz y z x y2 z2 y z x2 yz xy xz y z x x y z x y y z x y x z Phân tích đa thức sau thành nhân tử : x2 2xy y2 4x 4y 5 Lời giải
  20. x y 2 4 x y 5 x y 2 4 x y 2 4 9 x y 2 2 32 x y 5 x y 1 Bài 29: Phân tích đa thức x3 5x2 8x 4 thành nhân tử Lời giải x3 5x2 8x 4 x3 4x2 4x x2 4x 4 x x2 4x 4 x2 4x 4 x 1 x 2 2 Bài 30: Phân tích đa thức thành nhân tử: a)x2 y2 5x 5y b)2x2 5x 7 Lời giải a)x2 y2 5x 5y x2 y2 5x 5y x y x y 5(x y) x y x y 5 b)2x2 5x 7 2x2 2x 7x 7 2x x 1 7 x 1 x 1 2x 7 Bài 31: Phân tích đa thức sau đây thành nhân tử: 1.x2 7x 6 2.x4 2008x2 2007x 2008 Lời giải 1) x2 7x 6 x2 x 6x 6 x x 1 6 x 1 x 6 x 1 2) x4 2008x2 2007x 2008 x4 x2 2007x2 2007x 2007 1 x4 x2 1 207 x2 x 1 x2 1 x2 2007 x2 x 1 x2 x 1 x2 x 1 2007 x2 x 1 x2 x 1 x2 x 2008 Bài 32: Phân tích các đa thức sau thành nhân tử: a)x2 6xy 9y2 49 b)x2 6x 5 Lời giải a) x2 6xy 9y2 49 x2 6xy 9y2 72 x 3y 2 72 x 3y 7 x 3y 7 b)
  21. x2 6x 5 x2 x 5x 5 x x 1 5 x 1 x 1 x 5 Bài 33: Phân tích đa thức thành nhân tử: a) x3 x2 14x 24 b) x4 2018x2 2017x 2018 Lời giải a)x3 x2 14x 24 x3 2x2 x2 2x 12x 24 x2 x 2 x x 2 12 x 2 x2 x 12 x 2 x 2 x 3 x 4 b)x4 2018x2 2017x 2018 x4 2017x2 x2 2017x 2017 1 x4 x2 1 2017 x2 x 1 x2 x 1 x2 x 1 2017 x2 x 1 x2 x 1 x2 x 2018 Bài 34: Phân tích đa thức sau thành nhân tử: x4 2013x2 2012x 2013 Lời giải Ta có: x4 2013x2 2012x 2013 x4 x 2013x2 2013x 2013 x x 1 x2 x 1 2013. x2 x 1 x2 x 1 x2 x 2013 Phân tích đa thức sau thành nhân tử: x2 x4 1 x2 2 1 Bài 35: Lời giải x2 x4 1 x2 2 1 x2 x2 1 x2 1 x2 2 1 x4 x2 x4 x2 2 1 2 x4 x2 2 x4 x2 1 2 x4 x2 1 Bài 36: Phân tích đa thức sau thành nhân tử: x3 2x2 x 2 Lời giải Ta có
  22. x3 2x2 x 2 x3 2x2 x 2 x2 x 2 x 2 x 2 x 1 x 1 Bài 37: Phân tích đa thức thành nhân tử A x4 2007x2 2006x 2007 Lời giải A x4 2007x2 2006x 2007 x4 x 2007x2 2007x 2007 x2 x 1 x2 x 2007 Bài 38: Phân tích đa thức sau thành nhân tử: x(x + 4)(x + 6)(x + 10) + 128. Lời giải x(x+ 4)(x+ 6)(x + 10) + 128 = [x(x+10)].[(x+4)(x+6)] + 128 = ( x2 + 10x).(x2 + 10x + 24) + 128 Đặt x2 + 10x = a, ta có: a(a + 24) + 128 = a2 + 24a + 128 = (a+8)(a+16) = (x2 + 10x + 8)(x2 + 10x + 16) = (x + 2)(x + 8)(x + 5 + 17 )(x + 5 - 17 ) 2 Bài 39: Phân tích đa thức sau thành nhân tử: x3. x2 7 36x Dựa vào kết quả trên hãy chứng minh: A n3. n2 7 36n chia hết cho 210 với mọi số tự nhiên n Lời giải 2 2 a)x3 x2 7 36x x x3 7x 36 x x3 7x 6 x3 7x 6 x x3 x 6x 6 x3 x 6x 6 x x x 1 x 1 6 x 1 x x 1 x 1 6 x 1 x x 1 x2 x 6 x 1 x2 x 6 x x 1 x2 3x 2x 6 x 1 x2 3x 2x 6 x x 1 x 1 x(x 3) 2(x 3) x x 3 2 x 3 x x 1 x 1 x 3 x 2 x 2 x 3 b) Theo phần a ta có: 2 A n3 n2 7 36n n n 1 n 1 n 3 n 2 n 2 n 3 Đây là tích của 7 số nguyên liên tiếp. Trong 7 số nguyên liên tiếp có: - Một bội của 2 nên A chia hết cho 2 - Một bội của 3 nên Achia hết cho 3 - Một bôi của 5 nên A chia hết cho 5 - Một bội của 7 nên A chia hết cho 7. Mà 2;3;5;7 đôi một nguyên tố cùng nhau nên A 2.3.5.7 hay A210
  23. Bài 40: Phân tích đa thức thành nhân tử: x3 19x 30 Lời giải Phân tích đa thức thành nhân tử: x3 19x 30 Ta có: x3 19x 30 x3 9x 10x 30 x x2 9 10 x 3 x x 3 x 3 10 x 3 x 3 x2 3x 10 x 3 x 2 x 5 Vậy, x3 19x 30 x 3 x 2 x 5 Bài 41: Phân tích đa thứcA a3 b3 c3 3abc thành nhân tử. Từ đó suy ra điều kiện của a,b,c để a3 b3 c3 3abc . Lời giải 1 2 2 2 Ta có: A a3 b3 c3 3abc a b c a b b c c a 2 Để a3 b3 c3 3abc a3 b3 c3 3abc 0 1 2 2 2 a b c a b b c c a 0 2 a b c 0 a b c Bài 42: Phân tích đa thức a2 b c b2 c a c2 a b thành nhân tử Lời giải a2 b c b2 c a c2 a b a2 b c b2 a c c2 a b 2 2 2 a b c b a b b c c a b a2 b2 b c c2 b2 a b a b a b b c b c b c a b a b b c a b b c a b b c a c Bài 43: 4) Chứng minh : x y x3 x2 y xy2 y3 x4 y4 5) Phân tích đa thức thành nhân tử: x x 2 x2 2x 2 1 6) Tìm a,b,c biết: a2 b2 c2 ab bc ac và a8 b8 c8 3 Lời giải 1) Ta có: x y x3 x2 y xy2 y3 x4 x3y x2 y2 xy3 x3y x2 y2 xy3 y4 x4 y4 Vậy đẳng thức được chứng minh.
  24. x x 2 x2 2x 2 1 x2 2x x2 2x 2 1 2 2) Ta có: x2 2x 2 x2 2x 1 2 4 x2 2x 1 x 1 2 2 2 3) Biến đổi a2 b2 c2 ab bc ca về a b b c c a 0 Lập luận suy ra a b c Thay a b c vào a8 b8 c8 3 ta có: 3a8 3 a8 1 a 1 a b c 1 Vậy a b c 1 Bài 44: Cho a3 b3 c3 3abc với a,b,c 0 a b c Tính giá trị biểu thức P 1 1 1 b c a Lời giải Biến đổi giả thiết về dạng: 1 2 2 2 a b c a b b c c a 0 2 a b c 0 a b c c a b Với a b c 0 tính được: P 1 b c a Với a b c tính được: P 2.2.2 8 Bài 45: xyz Cho x3 y3 z3 3xyz. Hãy rút gọn phân thức : P x y y z z x Lời giải Từ x3 y3 z3 3xyz chỉ ra được x y z 0 hoặc x y z TH1: x y z 0 x y z; x z y; y z x P 1 1 TH2 : x y z P 8 Bài 46: 1 1 1 yz xz xy Cho 0, tính giá trị của biểu thức P x y z x2 y2 z2 Lời giải 1 1 1 1 1 1 3 Từ 0 x y z x3 y3 z3 xyz Khi đó: yz xz xy xyz xyz xyz 1 1 1 3 P 2 2 2 3 3 3 xyz. 3 3 3 xyz. 3 x y z x y z x y z xyz
  25. Bài 47: c) Cho a b c 0. Chứng minh rằng a3 b3 c3 3abc 1 1 1 d) Cho 0, (với x 0; y 0; z 0) x y z yz xz xy Tính giá trị của biểu thức x2 y2 z2 Lời giải 3 3 2 a) a b c a b 3 a b c 3 a b c2 c3 3 3 a b 3 a b c. a b c c3 a b c3 a3 3a2 b 3ab2 b3 c3 a3 b3 c3 3ab(a b) a3 b3 c3 3ab c (Vi a b c 0 a b c) a3 b3 c3 3abc 1 1 1 b) Với a ; b ;c x y z 1 1 1 3 Áp dụng kết quả câu a ta có: x3 y3 z3 xyz yz xz xy xyz xyz xyz 1 1 1 2 2 2 3 3 3 xyz. 3 3 3 x y z x y z x y z 3 xyz. 3 xyz Bài 48: Tìm x,y,z biết: 10x2 y2 4z2 6x 4y 4xz 5 0 Lời giải b)B 2x2 y2 2xy 8x 2028 x2 2xy y2 x2 8x 16 2012 2 2 x y x 4 2012 2012 x y 0 x 4 Đẳng thức xảy ra x 4 0 y 4 x 4 Giá trị nhỏ nhất của B là 2012 y 4 Bài 49: Cho a và b thỏa mãn : a b 1. Tính giá trị của biểu thức B a3 b3 3ab Lời giải 3 Ta có: B a3 b3 3ab a3 b3 3ab. a b a b 1 Vi a b 1 Bài 50: Phân tích đa thức sau thành nhân tử: a4 b c b4 c a c4 a b
  26. Lời giải a) a4 b c b4 c a c4 a b a4 b c b4 a c c4 a b a 4 b c b 4 a b b c c 4 a b a 4 b c b 4 a b b 4 b c c 4 a b b c a 4 b 4 a b b 4 c 4 b c a b a b a 2 b 2 a b b c b c b 2 c 2 a b b c a 3 a b 2 a 2 b b 3 b 3 b c 2 b 2 c c 3 2 2 2 a b b c a c a a c c b a c b a c a c a b b c a c a 2 b 2 c 2 a b b c c a Bài 51: Phân tích các đa thức sau thành nhân tử 2 3. 8 x2 3x 5 7 x2 3x 5 15 4. x11 x7 1 Lời giải 2 8 x2 3x 5 7 x2 3x 5 15 Đặt t x2 3x 5 , ta có: 2 8 x2 3x 5 7 x2 3x 5 15 8t2 7t 15 8t2 8t 15t 15 8t t 1 15 t 1 t 1 8t 15 Thay t x2 3x 5 vào đa thức ta có: 2 8 x2 3x 5 7 x2 3x 5 15 2 2 x 3x 5 1 8 x 3x 5 15 x2 3x 4 8x2 24x 55 2. x11 x7 1 x11 x10 x9 x10 x9 x8 x8 x7 x6 x6 x5 x4 x5 x4 x3 x3 x2 x x2 x 1 x9 x2 x 1 x8 x2 x 1 x6 x2 x 1 x4 x2 x 1 x3 x2 x 1 x2 x 1 x2 x 1 . x9 x8 x6 x4 x3 1 Bài 52: Phân tích đa thức sau đây thành nhân tử: 1.x2 7x 6 2.x4 2008x2 2007x 2008 Lời giải 1) x2 7x 6 x2 x 6x 6 x x 1 6 x 1 x 6 x 1 2)
  27. x4 2008x2 2007x 2008 x4 x2 2007x2 2007x 2007 1 x4 x2 1 207 x2 x 1 x2 1 x2 2007 x2 x 1 x2 x 1 x2 x 1 2007 x2 x 1 x2 x 1 x2 x 2008 Bài 53: 1 1 1 yz zx xy a) Cho 0.Tính giá trị của biểu thức sau: B . x y z x2 y2 z2 b) Cho x, y, z là ba số thực khác 0, thỏa mãn x y z 0 và x3 y3 z3 3xyz . x2019 y2019 z2019 Tính C . x y z 2019 Lời giải 1 1 1 1 1 1 1 a) vì 0 nên 3. ( ĐKXĐ: x, y, z 0 ) x y z x3 y3 z3 xyz yz zx xy xyz xyz xyz Ta có: B x2 y2 z2 x3 y3 z3 1 1 1 1 xyz. 3 3 3 xyz.3. 3 x y z xyz 1 1 1 Vậy, B 3khi 0 x y z b) vì x, y, z là ba số thực khác 0, thỏa mãn x y z 0 và x3 y3 z3 3xyz nên x y z 0 . x2019 y2019 z2019 3.x2019 1 Do đó, C x y z 2019 3x 2019 32018 1 Vậy, C với x, y, z là ba số thực khác 0, thỏa mãn x y z 0 và 32018 x3 y3 z3 3xyz Bài 54: 2 c) Cho a,b,c là ba số đôi một khác nhau thỏa mãn: a b c a2 b2 c2 a2 b2 c2 Tính giá trị của biểu thức: P a2 2bc b2 2ac c2 2ab d) Cho x y z 0. Chứng minh rằng: 2 x5 y5 z5 5xyz x2 y2 z2 Lời giải 2 a) a b c a2 b2 c2 ab ac bc 0 a2 a2 a2 a2 2bc a2 ab ac bc a b a c b2 b2 c2 c2 Tương tự: ; b2 2ac b a b c c2 2ac c a c b
  28. a2 b2 c2 P a2 2bc b2 2ac c2 2ab a2 b2 c2 a b a c a b b c a c b c a b a c b c 1 a b a c b c 3 b) Vì x y z 0 x y z x y z3 Hay x3 y3 3xy x y z3 3xyz x3 y3 z3 3xyz x2 y2 z2 x3 y3 z3 x2 y2 z2 Do đó: x5 y5 z5 x3 y2 z2 y3 z2 x2 z3 x2 y2 2 Mà x2 y2 x y 2xy z2 2xy Vi x y z Tương tự: y2 z2 x2 2yz; z2 x2 y2 2zx Vì vậy: 3xyz x2 y2 z2 x5 y5 z5 x3 x2 2yz y3 y2 2zx z3 z2 2xy 2 x5 y5 z5 2xyz x2 y2 z2 Suy ra : 2 x5 y5 z5 5xyz x2 y2 z2 Bài 55: Phân tích đa thức thành nhân tử: x2 2x x2 2x 1 6 Lời giải x 1 x 3 x2 2x 2 Bài 56: Cho x by cz; y ax cz; z ax by và x y z 0; xyz 0 . 1 1 1 CMR: 2 1 a 1 b 1 c Lời giải Từ giả thiết 2cz z x y 2cz x y z x y z x y z 1 2z c c 1 2z 2z c 1 x y z 1 2x 1 2y 1 1 1 Tương tự: ; . Khi đó: 2 1 a x y z 1 b x y z 1 a 1 b 1 c Bài 57: Phân tích đa thức sau thành nhân tử: A x3 y3 z3 3xyz Lời giải a) A x3 y3 z3 3xyz
  29. x3 y3 3xy x y z3 3xy x y 3xyz 3 x y z3 3xy x y z 2 x y z x y x y z z2 3xy x y z x y z x2 y2 z2 xy yz xz Bài 58: Phân tích đa thức sau thành nhân tử: x4 2013x2 2012x 2013 Lời giải x4 2013x2 2012x 2013 x4 x 2013x2 2013x 2013 x x 1 x2 x 1 2013. x2 x 1 x2 x 1 x2 x 2013 Bài 59: Phân tích đa thức thành nhân tử: M x 2 x 3 x 4 x 5 24 Lời giải M x 2 x 3 x 4 x 5 24 M x2 7x 10 x2 7x 12 24 M x2 7x 11 1 x2 7x 11 1 24 2 M x2 7x 11 25 M x2 7x 6 x2 7x 16 M x 1 x 6 x2 7x 16 Bài 60: Phân tích biểu thức sau thành nhân tử: P 2a3 7a2 b 7ab2 2b3 Lời giải Ta có: P 2 a3 b3 7ab(a b) 2 a b a2 ab b2 7ab a b a b 2a2 2b2 5ab a b 2a2 4ab 2b2 ab a b 2a a 2b b a 2b a b 2a b a 2b Kết luận P a b 2a b a 2b Bài 61: Phân tích đa thức thành nhân tử: x3 6x2 11x 6 Lời giải a) x3 6x2 11x 6 x3 x2 5x2 5x 6x 6 x2 x 1 5x x 1 6 x 1 x 1 x2 5x 6 x 1 x 2 x 3 Bài 62: Phân tích đa thức a2 b c b2 c a c2 a b thành nhân tử Lời giải
  30. Ta có: a2 b c b2 c a c2 a b a2 b c b2 c a c2 b c c a b c a2 c2 c a b2 c2 b c a c a c c a b c b c b c a c a c b c b c a c a b Bài 63: Phân tích các đa thức sau thành nhân tử a) x4 4 b) x 2 x 3 x 4 x 5 24 Lời giải 2 2 2 a. x4 4 x4 4x2 4 4x2 x4 4x2 4 2x x2 2 2x x2 2x 2 x2 2x 2 b. x 2 x 3 x 4 x 5 24 2 x2 7x 11 1 x2 7x 11 1 24 x2 7x 11 1 24 2 x2 7x 11 52 x2 7x 6 x2 7x 16 x 1 x 6 x2 7x 16 Bài 64: Phân tích biểu thức sau thành nhân tử: P 2a3 7a2b 7ab2 2b3 Lời giải Ta có: P 2 a3 b3 7ab(a b) 2 a b a2 ab b2 7ab a b a b 2a2 2b2 5ab a b 2a2 4ab 2b2 ab a b 2a a 2b b a 2b a b 2a b a 2b Kết luận P a b 2a b a 2b Bài 65: Phân tích các đa thức sau thành nhân tử: a) x4 2x2 y y2 9 b) x 2 x 3 x 4 x 5 24 Lời giải a, x4 2x2 y y2 9 = ( x4 2x2 y y2 ) 9 = (x2 y)2 9 = (x2 y 3)(x2 y 3) b, ( x + 2)( x + 3)( x + 4)( x + 5) - 24 = (x2 + 7x + 10)( x2 + 7x + 12) - 24 = (x2 + 7x + 11 - 1)( x2 + 7x + 11 + 1) - 24 = [(x2 + 7x + 11)2 - 1] - 24 = (x2 + 7x + 11)2 - 52 = (x2 + 7x + 6)( x2 + 7x + 16) = (x + 1)(x + 6) )( x2 + 7x + 16) Bài 66: Phân tích thành nhân tử: x4 6x2 7x 6 Lời giải x4 6x2 7x 6 x4 2x3 2x3 4x2 2x2 4x 3x 6 x3 x 2 2x2 (x 2) 2x x 2 3 x 2 x 2 x3 2x2 2x 3
  31. 3 2 2 2 x 2 x 3x x 3x x 3 x 2 x x 3 x x 3 x 3 x 2 x 3 x2 x 1 Bài 67: Phân tích đa thức sau thành nhân tử: A a 1 a 3 a 5 a 7 15 Lời giải Ta có: A a 1 a 3 a 5 a 7 15 (a 1)(a 7)(a 3)(a 5) 15 a2 8a 7 a2 8a 15 15 2 a2 8a 22 a2 8a 120 2 a2 8a 11 12 a2 8a 12 a2 8a 10 a 2 a 6 a2 8a 10 Bài 68: Phân tích đa thức thành nhân tử a)x4 1 2x2 b) x2 28x 27 Lời giải 2 a)x4 1 2x2 x2 1 b) x2 28x 27 x 1 x 27 Bài 69: Phân tích đa thức sau đây thành nhân tử: 1.x2 7x 6 2.x4 2008x2 2007x 2008 Lời giải 3) x2 7x 6 x2 x 6x 6 x x 1 6 x 1 x 6 x 1 4) x4 2008x2 2007x 2008 x4 x2 2007x2 2007x 2007 1 x4 x2 1 207 x2 x 1 x2 1 x2 2007 x2 x 1 x2 x 1 x2 x 1 2007 x2 x 1 x2 x 1 x2 x 2008 Bài 70: Phân tích đa thức x3 5x2 8x 4 thành nhân tử Lời giải x3 5x2 8x 4 x3 4x2 4x x2 4x 4 x x2 4x 4 x2 4x 4 x 1 x 2 2 Bài 71: Phân tích đa thức thành nhân tử a) x2 y2 5x 5y b) 2x2 5x 7 Lời giải
  32. a) x2 y2 5x 5y x2 y2 5 x y x y x y 5 x y x y x y 5 b) 2x2 5x 7 2x2 2x 7x 7 2x2 2x 7x 7 2x x 1 7 x 1 x 1 2x 7 Bài 72: Phân tích các đa thức sau thành nhân tử: A = x3 2019x2 2019x 2018 Lời giải A = x3 2019x2 2019x 2018 A = x3 1 2019(x2 x 2019) A = (x - 1)(x2 x 1) 2019(x2 x 1) A = x2 x 1 (x 1 2019) A = (x2 + x + 1 )(x 2018) Bài 73: Phân tích thành nhân tử P = a8 + a4b4 + b8 Lời giải P= a8 + a4b4 + b8 = (a4)2 + 2a4b4 + (b4)2 – a4b4 = (a4 + b4)2 – (a2b2)2 = (a4 + b4 + a2b2)(a4 + b4 – a2b2) Làm tương tự với a4 + b4 + a2b2 = (a2 + b2 + ab)(a2 + b2 - ab) Vậy ta có P = (a4 + b4 – a2b2)(a2 + b2 – ab)(a2 + b2 + ab) Bài 74: Phân tích các đa thức sau thành nhân tử: a) 3x(x 2) 5x 10 . b) x3 5x2 8x 4 . Lời giải a) 3x(x 2) 5x 10 = 3x(x 2) 5(x 2) = (x 2)(3x 5) b) Ta có x3 5x2 8x 4 = (x3 4x2 4x) (x2 4x 4) = x(x 2)2 (x 2)2 = (x 1)(x 2)2 Bài 75: Phân tích các đa thức sau thành nhân tử: a) 7x2 7xy 5x 5y . b) x4 2013x2 2012x 2013. Lời giải a) 7x2 7xy 5x 5y = (7x2 7xy) (5x 5y) = 7x(x - y) – 5(x - y) = (x - y)(7x – 5) b) Ta có x4 2013x2 2012x 2013 x4 x 2013x2 2013x 2013 x x 1 x2 x 1 2013 x2 x 1 x2 x 1 x2 x 2013 Bài 76: Phân tích các đa thức sau thành nhân tử: a) a4 + 8a3 + 14a2 - 8a -15 b) 4a2b2 - (a2 + b2 - c2)2 Lời giải a) a4 + 8a3 + 14a2 - 8a -15 = a4 + 8a3 + 15a2 - a2 - 8a -15 = (a4 + 8a3 + 15a2) - (a2 + 8a + 15) = a2( a2 + 8a + 15) - (a2 + 8a + 15) = (a2 + 8a + 15)( a2 - 1)
  33. = (a + 3)(a + 5)(a + 1)(a - 1) b) 4a2b2 - (a2 + b2 - c2)2 = (2ab)2 - (a2 + b2 - c2)2 = ( 2ab + a2 + b2 - c2) ( 2ab - a2 - b2 + c2) = [( a + b)2 - c2][c2 - (a - b)2] = (a + b - c)(a + b +c)(c – a + b)(c + a - b) Bài 77: Phân tích các đa thức sau thành nhân tử: a, x(x 2)(x2 2x 2) 1 b, x4 2016x2 2015x 2016 Lời giải a) x(x 2)(x2 2x 2) 1 (x2 2x)(x2 2x 2) 1 (x2 2x)2 2(x2 2x) 1 = (x2 2x 1)2 (x 1)4 b) x4 2016x2 2015x 2016 = x4 x 2016(x2 x 1) = x(x3 1) 2016(x2 x 1) = x(x 1)(x2 x 1) 2016(x2 x 1) = (x2 x 1)x(x 1) 2016 = (x2 x 1)(x2 x 2016 Bài 78: Phân tích các đa thức sau thành nhân tử: a) x3 – 4x b) x3 – 5x2 + 8x – 4 Lời giải a) x3 – 4x = x(x2 – 4) = x(x – 2)(x+2) b) x3 – 5x2 + 8x – 4 = x3 – 4x2 + 4x – x2 + 4x – 4 = x(x2 – 4x + 4) – (x2 – 4x + 4) = (x – 1)(x – 2)2 Bài 79: Phân tích đa thức sau thành nhân tử: A (x 1)(x 2)(x 3)(x 4) 144 Lời giải A = (x - 1)(x + 2)(x - 3)(x + 4) - 144 = [(x - 1)(x + 2)].[(x - 3)(x + 4)] - 144 = (x2 + x - 2)(x2 + x - 12) - 144 = (x2 + x - 7 + 5)(x2 + x - 7 - 5) - 144 = (x2 + x - 7)2 - 25 - 144 = (x2 + x - 7)2 - 169 = (x2 + x - 7 - 13)(x2 + x - 7 + 13) = (x2 + x - 20)(x2 + x + 6) = (x2 - 4x + 5x - 20)(x2 + x + 6) = (x - 4)(x + 5)(x2 + x + 6) Bài 80: Phân tích các đa thức sau thành nhân tử a) x4 4 b) x 2 x 3 x 4 x 5 24 Lời giải a) x4 4 x4 4x2 4 4x2 x4 4x2 4 2x 2 2 x2 2 2x 2 x2 2x 2 x2 2x 2 a)
  34. x 2 x 3 x 4 x 5 24 2 2 x 7x 11 1 x 7x 11 1 24 2 x2 7x 11 1 24 2 x2 7x 11 52 x2 7x 6 x2 7x 16 x 1 x 6 x2 7x 16 Bài 81: Lời giải Ta có : x4 + 2013x2 + 2012x + 2013 = (x4 – x) + 2013x2 + 2013x + 2013 = x(x - 1)(x2 + x +1) + 2013.(x2 + x +1) = (x2 + x +1)(x2 – x + 2013) Vậy x4 + 2013x2 + 2012x + 2013 = (x2 + x +1)(x2 – x + 2013) Bài 82: Lời giải Ta có : M = (x+2)(x+3)(x+4)(x+5) – 24 = (x2 + 7x + 10)(x2 +7x + 12) – 24 = (x2 + 7x +11 – 1)(x2 + 7x + 11 +1) – 24 = (x2 + 7x + 11)2 – 25 = (x2 + 7x + 6)(x2 + 7x+ 16) = (x + 1)(x + 6)(x2 + 7x + 16) Vậy M = (x + 1)(x + 6)(x2 + 7x + 16) Bài 83: Lời giải Ta có : P = 2a3 + 7a2b + 7ab2 +2b3 = 2(a3 + b3) + 7ab(a + b) = 2(a+b)(a2 – ab + b2) + 7ab(a + b) = (a + b) (2a2 + 2b2 + 5ab) = (a + b)(2a2 +4ab + 2b2 + ab) = (a + b)[2a(a+2b) + b(a + 2b)] = (a + b)(2a + b)(a + 2b) Vậy P = (a + b)(2a + b)(a + 2b) Bài 84: Lời giải Ta có : x3 – 6x2 + 11x – 6 = x3 – x2 – 5x2 + 5x + 6x – 6 = x2(x – 1) – 5x(x – 1) + 6(x – 1) = (x – 1)(x2 – 5x + 6) = (x – 1)(x – 2)(x – 3) Vậy x3 – 6x2 + 11x – 6 = (x – 1)(x – 2)(x – 3) Bài 85: Lời giải Ta có : a2(b – c) + b2(c – a) + c2(a – b) = a2(b – c) + b2(c – a) – c2(b - c+ c – a) = (b - c)(a2 – c2) + (c – a)(b2 – c2) = (b – c)(a – c)(a + c) + (c – a)(b – c)(b + c) = (b - c)(a – c)(a + c – b – c) = (b – c)(a – c)(a – b) Vậy a2(b – c) + b2(c – a) + c2(a – b) = (b – c)(a – c)(a – b) Bài 86: Phân tích đa thức sau thành nhân tử : x2 2xy y2 4x 4y 5 Lời giải x y 2 4 x y 5 x y 2 4 x y 4 9 x y 2 2 32 x y 5 x y 1
  35. Bài 87: Phân tích đa thức sau thành nhân tử: x4 2013x2 2012x 2013 Lời giải Ta có: x4 2013x2 2012x 2013 x4 x 2013x2 2013x 2013 x x 1 x2 x 1 2013. x2 x 1 x2 x 1 x2 x 2013 Bài 88: Phân tích các đa thức sau thành nhân tử: 3) a x2 1 x a2 1 4) 6x3 13x2 4x 3 2 3) x2 x 2 x2 x 15 Lời giải 1) a x2 1 x a2 1 ax2 a a2 x x ax x a x a ax 1 x a 2) 6x3 13x2 4x 3 6x3 6x2 7x2 7x 3x 3 6x2 x 1 7x x 1 3 x 1 x 1 6x2 7x 3 2 x 1 6x 9x 2x 3 x 1 3x 2x 3 2x 3 x 1 2x 3 3x 1 2 2 3) x2 x 2 x2 x 15 x2 x 2 x2 x 1 16 2 x2 x 1 42 x2 x 5 x2 x 3 Bài 89: Phân tích đa thức x3 5x2 8x 4 thành nhân tử Lời giải x3 5x2 8x 4 x3 4x2 4x x2 4x 4 x x2 4x 4 x2 4x 4 x 1 x 2 2 Bài 90: Cho x y 1và xy 0.Chứng minh rằng: x y 2 x y 0 y3 1 x3 1 x2 y2 3 Lời giải Biến đổi:
  36. x y x4 x y4 y y3 1 x3 1 y3 1 x3 1 x4 y4 x y x y 1 y 1 x & x 1 y xy y2 y 1 x2 x 1 x y x y x2 y2 x y xy x2 y2 y2 x y2 yx2 xy y x2 x 1 x y x2 y2 1 2 2 2 2 xy x y xy x y x y xy 2 x y x2 x y2 y x y x x 1 y y 1 xy x2 y2 x y 2 2 xy x2 y2 3 x y x y y x x y 2xy xy x2 y2 3 xy x2 y2 3 2 x y dfcm x2 y2 3 Bài 91: Gọi a,b,clà độ dài ba cạnh của tam giác thỏa mãn a3 b3 c3 3abc.Chứng minh tam giác đều. Lời giải C/m:a3 b3 c3 3abc a b c a2 b2 c2 ab bc ca +)Từ giả thiết suy ra : a b c a2 b2 c2 ab bc ca 0 a2 b2 c2 ab ac bc 0 (a b c 0) Biến đổi được kết quả: a b 2 b c 2 c a 2 0 a b 0 b c 0 a b c Tam giác đó là đều (đpcm) c a 0 2 Bài 92: Phân tích đa thức sau thành nhân tử: x3 x2 7 36x Lời giải 2 2 x3 x2 7 36x x x3 7x 36 x x3 7x 6 x3 7x 6 x x3 x 6x 6 x3 x 6x 6 x x 1 x 1 x 3 x 2 x 2 x 3
  37. Bài 93: Cho ba số a,b,cthỏa mãn abc 2004 2004a b c Tính M ab 2004a 2004 bc b 2004 ac c 1 Lời giải Thay 2004 abc vào M ta có: a2bc b c M ab a2bc abc bc b abc ac c 1 a2bc b c ab(1 ac c) b c 1 ac ac c 1 ac 1 c ac c 1 1 1 ac c c 1 ac ac c 1 1 ac c Bài 94: Phân tích các đa thức thành nhân tử: a) x3 y3 z3 3xyz b) x4 2011x2 2010x 2011 Lời giải a / x3 y3 z3 3xyz x y 3 3xy x y z3 3xyz x y z 3 3z x y x y z 3xy x y z x y z x y z 2 3z x y 3xy 2 2 2 x y z x y z 2xy 2yzz 2xz 3zx 3zy 3xy x y z x2 y2 z2 xy yz zx b / x4 2011x2 2010x 2011 x4 x3 x2 2010x2 2010x 2010 x3 1 x2 x2 x 1 2010 x2 x 1 x 1 x2 x 1 x2 x 1 x2 2010 x 1 x2 x 1 x2 x 2011 Bài 95: Phân tích đa thức thành nhân tử a)x4 1 2x2 b) x2 28x 27 Lời giải 2 a)x4 1 2x2 x2 1 b) x2 28x 27 x 1 x 27 Bài 96: Phân tích đa thức sau thành nhân tử : x x 2 x2 2x 2 1 Lời giải
  38. x x 2 x2 2x 2 1 x2 2x x2 2x 2 1 2 x2 2x 2 x2 2x 1 2 x2 2x 1 x 1 4 Bài 97: 2 Cho biểu thức A b2 c2 a2 4b2c2 a) Phân tích biểu thức Athành nhân tử b) Chứng minh rằng: Nếu a,b,clà độ dài các cạnh của một tam giác thì A 0 Lời giải a) Ta có: 2 A b2 c2 a2 4b2c2 b2 c2 a2 2bc 2 b2 c2 2bc a2 b2 c2 2bc a2 b c a b c a b c a b c a b) Ta có: b c a 0 (BĐT tam giác) b c a 0 (BĐT tam giác) b c a 0(BĐT tam giác) b c a 0 (BĐT tam giác) Vậy A 0 Bài 98: Phân tích các đa thức sau thành nhân tử: a) x y z 3 x3 y3 z3 b)x4 2010x2 2009x 2010 Lời giải c) x y z 3 x3 y3 z3 x y z 3 x3 y3 z3 y z x y z 2 x y z x x2 y z y2 yz z2 2 y z 3x 3xy 3yz 3zx 3 y z x x y z x y 3 x y x z y z d)
  39. x4 2010x2 2009x 2010 x4 x 2010x2 2010x 2010 x x 1 x2 x 1 2010 x2 x 1 x2 x 1 x2 x 2010 Bài 99: Phân tích các đa thức sau thành nhân tử a) x4 4 b) x 2 x 3 x 4 x 5 24 Lời giải 1a. x4 4 x4 4x2 4 4x2 2 x4 4x2 4 2x 2 x2 2 2x 2 x2 2x 2 x2 2x 2 1b. x 2 x 3 x 4 x 5 24 x2 7x 11 1 x2 7x 11 1 24 2 x2 7x 11 1 24 2 x2 7x 11 52 x2 7x 6 x2 7x 16 x 1 x 6 x2 7x 16 Bài 100: Phân tích đa thức sau thành nhân tử: A a 1 a 3 a 5 a 7 15 Lời giải A a 1 a 3 a 5 a 7 15 (a 1)(a 7)(a 3)(a 5) 15 a2 8a 7 a2 8a 15 15 2 a2 8a 22 a2 8a 120 2 a2 8a 11 12 a2 8a 12 a2 8a 10 a 2 a 6 a2 8a 10 Bài 101: Với giá trị nào của a và b thì đa thức x a x 10 1 phân tích thành tích của một đa thức bậc nhất có hệ số nguyên Lời giải Giả sử :
  40. x a x 10 1 x m x n m,n ¢ x2 a 10 x 10a 1 x2 m n x mn m n a 10 mn 10a 1 Khử a ta có: mn 10 m n 10 1 mn 10m 10n 100 1 m(n 10) 10(n 10) 1 m 10 1 m 10 1 a 12 Vì m,n nguyên ta có: & n 10 1 n 10 1 a 8 Bài 102: Phân tích các đa thức sau thành nhân tử: a)3x2 7x 2 b) a x2 1 x a2 1 Lời giải a)3x2 7x 2 3x2 6x x 2 3x x 2 x 2 3x 1 x 2 b)a x2 1 x a2 1 ax2 a a2 x x ax x a x a x a ax 1 Bài 103: Phân tích đa thức sau thành nhân tử: a4 b c b4 c a c4 a b Lời giải a4 b c b4 c a c4 a b a4 b c b4 a c c4 a b a4 b c b4 a b b c c4 a b a4 b c b4 a b b4 b c c4 a b b c a4 b4 a b b4 c4 b c a b a b a2 b2 a b b c b c b2 c2 a b b c a3 ab2 a2b b3 b3 bc2 b2c c3 2 2 2 a b b c a c a ac c b a c b a c a c a b b c a c a2 b2 c2 ab bc ca Bài 104: Phân tích đa thức thành nhân tử: a) x2 x 6 b) x3 x2 14x 24
  41. Lời giải a) x2 x 6 x2 2x 3x 6 x x 2 3 x 2 x 3 x 2 b) x3 x2 14x 24 x3 2x2 x2 2x 12x 24 x2 x 2 x x 2 12 x 2 x 2 x2 x 12 x 2 x2 4x 3x 12 x 2 x 4 x 3 Bài 105: Phân tích đa thức thành nhân tử: x x 2 x2 2x 2 1 Lời giải Ta có: x x 2 x2 2x 2 1 x2 2x x2 2x 2 1 2 x2 2x 2 x2 2x 1 2 x2 2x 1 x 1 4 Bài 106: Phân tích các đa thức sau thành nhân tử a) x4 + 4 b) (x + 2)(x + 3)(x + 4)(x + 5) -24 Lời giải a) x4 4 x4 4x2 4 4x2 x4 4x2 4 2x 2 2 x2 2 2x 2 x2 2x 2 x2 2x 2 b) x 2 x 3 x 4 x 5 24 x2 7x 11 1 x2 7x 11 1 24 2 x2 7x 11 1 24 2 x2 7x 11 52 x2 7x 6 x2 7x 16 x 1 x 6 x2 7x 16 Bài 107: Phân tích đa thức sau thành nhân tử: ab a b bc b c ca c a 2abc Lời giải
  42. ab a b bc b c ca c a 2abc ab a b abc bc b c abc ca c a ab a b c bc a b c ac c a b(a b c)(a c) ac(c a) (a c) ab ac b2 bc a c a b c b b c a c a b b c 4 2 Bài 108: Phân tích đa thức sau thành nhân tử: x 2013x 2012x 2013 Lời giải x4 2013x2 2012x 2013 x4 x 2013x2 2013x 2013 x x 1 x2 x 1 2013 x2 x 1 x2 x 1 x2 x 2013 Bài 109: Phân tích các đa thức sau thành nhân tử: a) a3 – a2 – 4a + 4 b) 2a3 – 7a2b + 7ab2 + 2b3 Lời giải a) a3 a2 4a 4 a2 a 1 4 a 1 a 1 a 2 a 2 b)2a3 7a2b 7ab2 2b3 2 a b a2 ab b2 7ab a b a b 2a2 2b2 5ab a b 2a2 4ab 2b2 ab a b 2a a 2b b b 2a a b 2a b a 2b Bài 110: Phân tích đa thức a2 b c b2 c a c2 a b thành nhân tử Lời giải Ta có: a2 b c b2 c a c2 a b a2 b c b2 c a c2 b c c a b c a2 c2 c a b2 c2 b c a c a c c a b c b c b c a c a c b c b c a c a b Bài 111: Phân tích đa thức thành nhân tử: x2 2x x2 2x 1 6 Lời giải
  43. x2 2x x2 2x 1 6 x 1 x 3 x2 2x 2 Bài 112: Phân tích các đa thức sau thành nhân tử: a) 12x3 16x2 5x 3 2 b) x2 x 1 5x x2 x 1 4x2 Lời giải a) 12x3 16x2 5x 3 12x3 6x2 22x2 11x 6x 3 6x2 2x 1 11x 2x 1 3 2x 1 2x 1 6x2 11x 3 2x 1 6x2 9x 2x 3 2x 1 3x 2x 3 2x 3 2x 1 3x 1 2x 3 2 b) A= x2 x 1 5x x2 x 1 4x2 Đặt x2 x 1 y , ta có: A 4x2 5xy y2 4x y x y 4x x2 x 1 x x2 x 1 x2 5x 1 x2 2x 1 x 1 2 x2 5x 1 2 5 21 5 21 x 1 x x 2 2 Bài 113: Phân tích các đa thức thành nhân tử: 8 a) 18x3 x 25 b) a a 2b 3 b 2a b 3 c) x 2 x 3 x 4 x 5 1 Lời giải 3 8 2 4 2 2 a) 18x x 2x 9x 2x 3x 3x 25 25 5 5 3 3 3 3 b) a a 2b b 2a b a a b b b a a b a a b 3 3 a b 2 b 3 a b b2 b3 b a3 3a2 a b 3a a b 2 a b 3 a a b 3 3ab a b 2 3ab2 a b ab3 a3b 3a2b a b 3ab a b 2 b a b 3
  44. a a b 3 3ab2 a b ab3 a3b 3a2b a b b a b 3 a b a a b 2 3ab2 ab a b 3a2b b a b 2 a b a3 2a2b ab2 3ab2 a2b ab2 3a2b a2b 2ab2 b3 a b a3 3a2b 3ab2 b3 a b a b 3 c) x 2 x 3 x 4 x 5 1 x2 7x 10 x2 7x 12 1 x2 7x 11 1 x2 7x 11 1 1 2 2 x2 7x 11 1 1 x2 7x 11 Bài 114: Phân tích thành nhân tử: a) a2 7a 12 4 2 b) x 2015x 2014x 2015 c) x3 y3 z3 3xyz 2 d) x2 8 36 Lời giải a) a2 7a 12 a2 3a 4a 12 a 3 a 4 4 2 4 3 2 2 3 b) x 2015x 2014x 2015 x x x 2014x 2014x 2014 x 1 x2 x2 x 1 2014 x2 x 1 x 1 x2 x 1 x2 x 1 x4 2014 x 1 x2 x 1 x4 x 2015 c) x3 y3 z3 3xyz x y 3 3xy x y 3xyz x y z 3 3z x y x y z 3xy x y z x y z x y z 2 3z x y 3xy x y z x2 y2 z2 2xy 2yz 2zx 3zx 3zy 3xy x y z x2 y2 z2 xy yz xz d) (x2 – 8)2 + 36 = x4 - 16x2 + 100 = (x2 + 10)2 – 36x2 = (x2 + 6x + 10)(x2 - 6x + 10) Bài 115: Phân tích các đa thức sau thành nhân tử: a) 5x2 26x 24 1 3 3 2 3 b) x x x 1 8 4 2
  45. c) x2 6x 5 4 2 d) x 2015x 2014x 2015 Lời giải a) 5x2 26x 24 5x2 6x 20x 24 x 5x 6 4 5x 6 5x 6 x 4 3 2 3 1 3 3 2 3 1 1 1 2 3 1 b) x x x 1 x 3. x .1 3. x .1 1 x 1 8 4 2 2 2 2 2 c) x2 6x 5 x x 1 5 x 1 x 5 x 1 d) x4 2015x2 2014x 2015 x4 x3 x2 x3 x2 x 2015x2 2015x 2015 x2 x2 x 1 x x2 x 1 2015 x2 x 1 x2 x 1 x2 x 2015 Bài 116: Phân tích các đa thức sau thành nhân tử: 2 a) 8 x2 3x 5 7 x2 3x 5 15 11 7 b) x x 1 Lời giải 2 a) 8 x2 3x 5 7 x2 3x 5 15 Đặt t x2 3x 5 , ta có: 2 8 x2 3x 5 7 x2 3x 5 15 8t 2 7t 15 8t 2 8t 15t 15 8t t 1 15 t 1 t 1 8t 15 Thay t x2 3x 5 vào đa thức ta có: 2 2 2 2 2 8 x 3x 5 7 x 3x 5 15 x 3x 5 1 8 x 3x 5 15 x2 3x 4 8x2 24x 55 b) x11 x7 1 x11 x10 x9 x10 x9 x8 x8 x7 x6 x6 x5 x4 x5 x4 x3 x3 x2 x x2 x 1 x9 x2 x 1 x8 x2 x 1 x6 x2 x 1 x4 x2 x 1 x3 x2 x 1 x2 x 1 x2 x 1 . x9 x8 x6 x4 x3 1
  46. Bài 117: 2 2 2 x a 1 a a x 1 x2 x2a a a2 a2 x2 1 x2 a 1 a a2 x2 1 x2 x2a a a2 a2 x2 1 2 2 2 x2 x2a a2 x2 1 a a2 x 1 a a 1 a a x2 x2a a2 x2 1 a a2 x2 1 a a2 1 a a2 2 2 x 1 1 a a 1 a a2 x2 1 1 a a2 1 a a2 Bài 118: 2x2 8 0 2 3 x 0 a) ĐKXĐ: 8 4x 2x x 0 x 2 x 0 x 0 Với thì: x 2 x2 2x 2x2 1 2 A 2 2 3 . 1 2 2x 8 8 4x 2x x x x x(x 2) 2x2 x2 x 2 . 2(x2 4) 2 x2 x 4 x 2 x x 2 2 2x2.2 x 1 x 2 . 2 x2 4 x 2 x2 2 2 x 4x 4 4x x 1 . 2 x2 4 x x2 4 x 1 x 1 . 2 x2 4 x 2x x 0 x 1 Vậy , với thì A x 2 2x x 0 b) Xét với * x 2 Giả sử biểu thức A nhận giá trị nguyên thì biểu thức 2A cũng nhận giá trị nguyên 2x 2 1 2A ¢ ¢ ¢ x 1;1 2x x x 1; x 1 đều thỏa mãn * 1 1 Với x 1 thì A 0(thỏa mãn A ¢ ) 2( 1)
  47. 1 1 Với x 1thì A 2(thỏa mãn A ¢ ) 2.1 Vậy để biểu thức A nhận giá trị nguyên thì x 1;1 Bài 119: x2 x4 1 x2 2 1 x2 x2 1 x2 1 x2 2 1 x4 x2 x4 x2 2 1 2 x4 x2 2 x4 x2 1 2 x4 x2 1 Bài 120: a) ĐKXĐ: x 0; x 1 x(x 1) x 1 x(x 1) x(x 1) x2 P : . x 1 2 x(x 1) x 1 2 x 1 x 1 1 x2 1 1 b) P P x (tm) 2 x 1 2 2 x2 x2 1 1 1 1 Cosi 1 P x 1 x 1 2 2 x 1 . 2 4 x 2 x 1 x 1 x 1 x 1 x 1 Bài 121: A x3 y3 z3 3xyz x y 3 3xy x y z3 3xyz x y z 3 3 x y z x y z 3xy x y z x y z x y z 2 3 x y z 3xy x y z x2 y2 z2 xy yz xz Bài 122: a/ = x(x2 - 9) = x(x + 3)(x -3) b/ = 4x2 + 4x – x – 1 = (4x2 + 4x) – (x + 1) = 4x(x + 1) – (x + 1) = (x + 1)(4x - 1) c/ = ab( a - b) + b2c – bc2 + ac2 – a2c = ab( a-b) + ( b2c – a2c) + (ac2 – bc2) = ab( a - b) + c( b2- a2) + c2(a - b) 2 = ( a - b) ab ac bc c a b a b c c b c = (a - b)( b - c)( a - c) Bài 123: a 2 2 a/ A = a3 2a2 4a2 8a 4a 8
  48. 2 2 a 2 a 2 1 = a 2 a2 4a 4 a 2 a 2 2 a 2 1 b/ Để A Z Z nên a – 2 là ước của a 2 Với a – 2 = 1 thì a = 3 Với a – 2 = - 1 thì a = 1. Vậy a 1;1 thì A là số nguyên Bài 124: a) 2 x 3 3x x 4 x x x 1 x 1 3 3x x 4 A x 1 x2 x 1 x3 1 x 1 x2 x 1 2 x3 2x2 2x 1 x 1 x x 1 x2 x 1 x 1 x2 x 1 x 1 x2 x 1 x2 x 1 2 1 3 2 x x x 1 2 4 b) Với mọi x 1thì A 2 2 x x 1 1 3 x 2 4 2 2 1 3 1 3 Vì x 0; x 0,x 1 A 0,x 1 2 4 2 4 Bài 125: a) Ta nhận thấy a 1,a 2 là nghiệm của đa thức nên: a3 2a2 13a 10 a 1 a 2 a 5 b) 2 a2 4b2 5 16 ab 1 2 a2 4b2 5 4ab 4 a2 4b2 5 4ab 4 a 2b 2 1 a 2b 2 9 a 2b 1 a 2b 1 a 2b 3 a 2b 3 Bài 126: a) ĐKXĐ: x 2, x 3 2x 9 x 3 2x 4 A x 3 x 2 x 2 x 3 x2 2x 8 x 4 x 2 x 4 x 3 x 2 x 3 x 2 x 3 x 4 7 b) Ta có: A 1 x 3 x 3 Để A ¢ thì x 3 U (7) 1; 7 x 4;2;4;10 Kết hợp với ĐKXĐ ta được x 4;4;10
  49. Bài 127: x20 x 1 x20 x2 x2 x 1 x2 x18 1 x2 x 1 x2 x9 1 x9 1 x2 x 1 x2 x9 1 x3 1 x6 x3 1 x2 x 1 x2. x9 1 x 1 x2 x 1 x6 x3 1 x2 x 1 2 2 9 6 3 x x 1 . x . x 1 x 1 x x 1 1 Bài 128: 1) Ta có: x4 2013x2 2012x 2013 x4 x 2013x2 2013x 2013 x x 1 x2 x 1 2013. x2 x 1 x2 x 1 x2 x 2013 x 0 2) Điều kiện: x 2 Ta có: x2 2x 2x2 1 2 A 2 2 3 1 2 2x 8 8 4x 2x x x x x2 2x 2x2 x2 x 2 . 2 4 2 x x2 2 x x2 2 x 4 x2 2x 2x2 x 1 x 2 . 2 2 x2 2 x 4 x 4 2 x 2 x. x 2 4x2 x 1 . x 2 x3 4x2 4x 4x2 x 1 . . 2 x 2 x2 4 x2 2 x2 4 x2 2 x x 4 x 1 x 1 2x2 x2 4 2x x 1 x 0 Vậy A với 2x x 2
  50. Bài 129: x2 y z y2 z x z2 x y x2 y z y z z y2 x z2 x z2 y x2 y z yz y z x y2 z2 y z x2 yz xy xz y z x x y z x y y z x y x z Bài 130: x 1 1 2 x3 2x2 a)Q 1 3 2 : 3 2 x 1 x x 1 x 1 x x x 2 x 1 x 1 2 x x 1 x2 x 1 1 . x 1 x2 x 1 x x 2 2x2 4x 1 1 . DK : x 0; 1;2 x 1 x(x 2) 2x(x 2) 2 x 1 1 1 x 1 x x 2 x 1 x 1 x 2(ktm) 3 5 b) x 1 4 4 x (tm) 2 1 Với x Q 3 2 c) Q ¢ x 3; 2;1 Bài 131: 1 5 3 7 ĐKXĐ: x ; x ; x ; x ; x 4 2 2 2 4 2x 3 a) Rút gọn P 2x 5 1 x 1 2 b) x 2 1 x 2 1 1 1 2 )x P ; )x P 2 2 2 3 2x 3 2 c) P 1 ¢ x 5 U (2) 2; 1;1;2 2x 5 x 5
  51. x 5 2 x 3(tm) x 5 1 x 4(ktm) x 5 1 x 6(tm) x 5 2 x 7(tm) Kết luận: x 3;6;7thì P nhận giá trị nguyên 2x 3 2 d) P 1 2x 5 x 5 Ta có: 1 0 2 Để P 0 thì 0 x 5 0 x 5 x 5 Với x 5thì P 0 Bài 132: 1 a) ĐKXĐ: x 1; x 2 1 x 2 1 x 5 x x2 1 A 2 . 1 x 1 2x 2 x2 1 2 . 1 x2 1 2x 1 2x b) A nguyên, mà x nguyên nên 2 1 2x Từ đó tìm được x 1 và x 0 Kết hợp điều kiện x 0 A A A 0 c) Ta có: 2 1 0 1 2x 0 x 1 2x 2 1 Kết hợp với điều kiện : 1 x 2 Bài 133: 1) x2 2014x 2013 x2 2013x x 2013 x x 2013 x 2013 x 1 x 2013 2) x(x 2)(x2 2x 2) 1 x2 2x x2 2x 2 1 2 x2 2x 2 x2 2x 1 2 x2 2x 1 x 1 4 Bài 134: a) Ta có:
  52. x4 2013x2 2012x 2013 x4 x 2013x2 2013x 2013 x x 1 x2 x 1 2013. x2 x 1 x2 x 1 x2 x 2013 b) x 0 Điều kiện: x 2 Ta có: x2 2x 2x2 1 2 A 2 2 3 1 2 2x 8 8 4x 2x x x x x2 2x 2x2 x2 x 2 . 2 4 2 x x2 2 x x2 2 x 4 x2 2x 2x2 x 1 x 2 . 2 2 x2 2 x 4 x 4 2 x 2 x. x 2 4x2 x 1 . x 2 x3 4x2 4x 4x2 x 1 . . 2 x 2 x2 4 x2 2 x2 4 x2 2 x x 4 x 1 x 1 2x2 x2 4 2x x 1 x 0 Vậy A với 2x x 2 Bài 135: b) A x3 y3 z3 3xyz x3 y3 3xy x y z3 3xy x y 3xyz x y 3 z3 3xy x y z x y z x y 2 x y z z2 3xy x y z x y z x2 y2 z2 xy yz xz c) Xét hiệu: 1 1 4 A a b a b b a b a a b 4ab ab a b
  53. 2 a2 2ab b2 a b 0(Dấu " "xảy ra a b) ab a b ab a b 1 1 4 Vậy (dấu " "xảy ra a b) a b a b Bài 136: a) Điều kiện x 0, x 2 x2 6 1 10 x2 M 3 : x 2 x 4x 6 3x x 2 x 2 x 2 1 x2 4 10 x2 : x 2 x 2 2 x x 2 x 2 x 2 2 x x 2 6 : x 2 x 2 x 2 6 x 2 1 1 . x 2 x 2 6 x 2 2 x 1 1 1 b) x 1 M 2 x 2 1 3 1 1 3 c) M 2 2 2 2 x 1 2 x x (TMDK) 2 x 2 2 1 d) Để M nhận giá trị nguyên thì nhận giá trị nguyên 2 x 2 x U 1 1;1 2 x 1 x 3(tm) 2 x 1 x 1(tm) Vậy với x 1;3thì M nhận giá trị nguyên. a3 4a2 a 4 Bài 137: Rút gọn biểu thức: P a3 7a2 14a 8 Lời giải 2 2 2 a3 4a2 a 4 a a 1 4 a 1 a 1 a 4 P a3 7a2 14a 8 a3 8 7a a 2 a 2 a2 5a 4 a 1 a 1 a 4 a 1 a 2 a 1 a 4 a 2 a 1 Vậy P với a 1;2;4 a 2 x2 a 1 a a2 x2 1 Bài 138: Rút gọn biểu thức: x2 a 1 a a2 x2 1 Lời giải
  54. 2 2 2 x a 1 a a x 1 x2 x2a a a2 a2 x2 1 x2 a 1 a a2 x2 1 x2 x2a a a2 a2 x2 1 2 2 2 x2 x2a a2 x2 1 a a2 x 1 a a 1 a a x2 x2a a2 x2 1 a a2 x2 1 a a2 1 a a2 2 2 x 1 1 a a 1 a a2 x2 1 1 a a2 1 a a2 Bài 139: Phân tích các đa thức sau thành nhân tử a) x4 4 b) x 2 x 3 x 4 x 5 24 Lời giải a) x4 4 x4 4x2 4 4x2 2 x4 4x2 4 2x 2 x2 2 2x 2 x2 2x 2 x2 2x 2 b) x 2 x 3 x 4 x 5 24 x2 7x 11 1 x2 7x 11 1 24 2 x2 7x 11 1 24 2 x2 7x 11 52 x2 7x 6 x2 7x 16 x 1 x 6 x2 7x 16