Đề thi thử Trung học phổ thông quốc gia môn Toán học - Đề số 46 - Năm học 2016-2017 (Kèm đáp án)
Bạn đang xem tài liệu "Đề thi thử Trung học phổ thông quốc gia môn Toán học - Đề số 46 - Năm học 2016-2017 (Kèm đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_thi_thu_trung_hoc_pho_thong_quoc_gia_mon_toan_hoc_de_so_4.doc
Nội dung text: Đề thi thử Trung học phổ thông quốc gia môn Toán học - Đề số 46 - Năm học 2016-2017 (Kèm đáp án)
- 80 CÂU HỎI TRẮC NGHIỆM MÔN TOÁN 12 TRƯỜNG THPT MỸ HƯƠNG Phần 1: Giải tích 1/ Hàm số y x3 3x 5 đồng biến trên: a) ; 1 b) 1; c) 1; d) 1;1 2/ Hàm số nào nghịch biến trên 1;1 : x 1 a) y x3 3x b) y x3 3x c) y x4 2x2 d) y x 1 x 3/ Hàm số y có tập xác định là: x2 1 a) D = R b) D = R \ 1 c) D =R \ 1 d) D =R \ 1 2016x 4/ Hàm số y có tập xác định là: x2 1 a) D = R b) D =R \ 1 c) D =R \ 1 d) D = R \ 1 5/ Tập D R \ 2 là tập xác định của hàm số: x2 x 2 x2 x 2 x a) y b) y c) y d) y x2 4 x 2 2x 2 2x 4 6/ Hàm số y x3 3x2 2016 có điểm cực tiểu là: a) x 0 b) x 2 c) x 2 d) x 1 7/ Điểm x 1 là điểm cực đại của hàm số: 1 1 a) y x3 3x2 6 b) y x3 3x 2 c) y x3 3x 4 d) y x3 x2 3 2 1 2x 8/ Tiệm cận ngang của hàm số y là: x 2 a) y = 2 b) y = –2 c) y = –1 d) y = –1/2 9/ Trong các hàm số sau thì hàm số nào có tiệm cận đứng là x 1 : x2 x 2 x2 1 2x 1 a) y b) y c) y d) y 2 x2 1 x 1 x 1 x2 1 10/ Cho hàm số y x3 2mx2 m2 x 2 với giá trị nào của m để hàm số đạt cực tiểu tại x 1 a) m = 3 b) m 1 c) m 1 và m 3 d) m 3 11/ Đồ thị sau đây là của hàm số nào: a) y x3 x 1 b) y x3 3x2 2 c) y x3 3x 2 d) y x3 3x2 2 1 12/ Đường thẳng y = m cắt đồ thị hàm số y x4 2x2 tại 4 điểm phân biệt khi: 4 a) 0 – 4 c) – 4 < m < 0 d) m < 0 2 13/ Giá trị nhỏ nhất của hàm số y x trên khoảng 0; bằng: x a) 0 b) 3 c) 2 d) 2 2
- 14/ Giá trị lớn nhất của hàm số y 4x x2 bằng: a) 0 b) 3 c) 2 d) 2 2 15/ Số giao điểm của hai đồ thị hàm số y x3 x2 2x 3 và y x2 x 1 là: a) 0 b) 1 c) 2 d) 3 16/ Giá trị nhỏ nhất của hàm số y x2 2x 3 là: a) 0 b) 1 c) 2 d) 3 3x 1 17/ Với giá trị m nào thì tiệm cận đứng của đồ thị hàm số yđi qua điểm M (1;3) 2x m a) m 1 b). m 2 c) m 3 d) m 2 mx 1 18/ Với giá trị m nào thì tiệm cận ngang của đồ thị hàm số y đi qua điểm A(1;– 2) x m a) –2 b) –1 c) 1 d) 2 19/ Hàm số nào sau đây đồng biến trên từng khoảng xác định của nó ? x 1 x 1 x 1 x 1 a) y b) y c) y d) y x 1 x 1 x 1 x 1 20/ Số nào trong các số sau lớn hơn 1: 1 1 a) log0,2 125 b) log0,5 c) log 1 36 d) log0,5 8 6 2 21/ Giá trị của biểu thức I = log 16 là: 3 2 2 8 8 a) I = – 6 b)I = 6 c) I = – d) I = 3 3 1 22/ Lôgarit theo cơ số 3 của số nào dưới đây bằng . 3 1 1 1 a) b) 3 3 c) d) 27 3 3 3 3 3 23/ Giá trị của biểu thức A = loga (a a) (với 0 a 1 ) là: 2 4 3 a) A = b) A = c) A = d) A = 3 3 3 2 24/ Tập xác định của hàm số y log3 x 4 là: a) D 4; b) D 4; c) D 4; d) D 4; 25/ Đạo hàm của hàm số y ln x 3 là: 3 1 a) y ' 1 b) y ' c) y ' d) y ' ex 3 x 3 x 3 x2 9 26/ Tập xác định của hàm số y log là: 0,7 x 5 a) D 5; 3 3; b) D 3;3 c) D ; 3 3; d) D 5;3 f ' 0 27/ Cho f(x) = tanx và (x) = ln(x – 1). Tính . Đáp số của bài toán là: ' 0 a) –1 b) 1 c) Không tồn tại d) 0 28/ Tìm nghiệm của phương trình 22x 1 8 a) x 1 b). x 2 c) x 3 d) x 4 1 29/ Tìm ghiệm của phương trình log x là: 2 2 2 a) x 1 b) x 4 c) x 2 d) x 2 30/ Tính nghiệm của phương trình: log2 (log4 x) 1 là: a) x 2 b) x 4 c) x 8 d) x 16
- 31/ Tập nghiệm của bất phương trình 4x 3.2x 2 0 a) ;0 b) ;0 1; c) ;0 1; d) 1; 32/ Tập nghiệm của bất phương trình log 1 x 1 là. 2 1 1 a) ; b) 2; c) ; d) 2; 2 2 33/ Cho số phức z thỏa: z 2 i z 3 5i . Khi đó phần thực và phần ảo của z là: a) 2 và –3 b) 2 và 3 c) –2 và 3 d) –3 và 2. 34/ Nghịch đảo của số phức z 1 3i là: 1 3 1 3 a) i b) i c) 1 + 3i d) –1 + 3i 2 2 4 4 35/ Cho số phức z thỏa mãn: z (1 2i) 7 4i . Số phứcw z 2i thì: a) w 13 b) w 17 c) w 29 d) w 5 36/ Tìm số phức z, biết: (3 i)z (2 5i)z 10 3i a) z 2 3i b) z 2 3i c) z 2 3i d) z 2 3i 37/ Cho x, y là các số thực. Hai số phức z 3 i và z (x 2y) yi bằng nhau khi: a) x 5, y 1 b) x 1, y 1 c) x 3, y 0 d) x 2, y 1 1 1 38/ Họ nguyên hàm của hàm số f (x) là: x x2 1 1 1 a) ln x ln x2 C b) lnx – + C c) ln|x| + + C d) lnx + + C x x x 39/ Họ nguyên hàm của hàm số f x 1 cos3x là: 1 1 a) x sin 3x C b) x sin 3x C c) x sin 3x C d) x sin 3x C 3 3 ex 40/ Họ nguyên hàm của hàm số: y = là: ex 2 A. 2ln(ex 2) C B. ln(ex 2) + C C. exln(ex 2) + C D. e2 x + C. dx 41/ Kết quả của là: x2 3x 2 x 1 x 1 2 x a) ln C b) ln C c) ln C D. 2 x 2 x x 1 ln x 1 2 x C 42/ Họ nguyên hàm của hàm số: y sin x.cos x là: 1 1 1 a) cos 2x +C b) cos 2x C c) sin 2x C d) cos 2x C 2 4 4 1 43/ Kết quả của dx là: 1 2x 1 1 1 a) ln 1 2x C b) ln 1 2x C c) ln 1 2x C d) ln 1 2x C 2 2 2 44/ Họ nguyên hàm của hàm số y (t anx cot x)2 là: 1 a) (t anx cot x)3 C b) tan x cot x C c) t anx cot x 2x C d) tan x cot x 2x C 3 1 2 45/ Tích phân I = x.ex 1dx có giá trị là: 0 e2 e e2 e e2 e e2 e a) b) c) d) 2 3 2 3
- 3 x 2 46/ Biến đổi dx = f t dt , với t 1 x . Khi đó f(t) là hàm nào trong các hàm số sau: 0 1 1 x 1 a) f t 2t 2 2t b)f t t 2 t c) f t t 2 t d) f t 2t 2 2t 47/ Diện tích hình phẳng được giới hạn bởi các đường y 2x x2 và đường thẳng x y 2 là: 1 5 6 1 a) dvdt b) dvdt c) dvdt d) dvdt 6 2 5 2 48/ Diện tích hình phẳng giới hạn bởi y x3 , y 0, x 1, x 2 có kết quả là: 17 15 14 a) b) 4 c) d) 4 4 4 49/ Cho hình (H) giới hạn bởi các đường y x ;x 4 ; trục hoành. Quay hình (H) quanh trục Ox ta được khối tròn xoay có thể tích là: 15 14 16 a) b) c) 8 d) 2 3 3 Phần 2: Hình học Câu 1: Tính thể tích khối lập phương cạnh 2 cm. 8 A. 8 cm B. 8 cm2 C. cm3 D. 8 cm3 3 Câu 2: Tính thể tích khối hộp chữ nhật ABCD.A’B’C’D’ có AB = 2 cm, AD = 3 cm, AA’ = 4 cm. A. 8 cm2 B. 24 cm2 C. 24 cm3 D. 8 cm3 Câu 3: Tính thể tích khối lập phương có độ dài đường chéo bằng m. 1 A. 3 m3 B. 33 m3 C. m3 D. 1 m3 3 Câu 4: Tính thể tích khối chóp S.ABC có đáy ABC là tam giác đều cạnh a, SA vuông góc với mặt đáy và SA=3a: 3 3a 2 3a 2 3 3a 2 A. B. C. D. 4 4 12 4 Câu 5: Tính thể tích khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với mặt đáy và SA=3a: A. 3a2 B. a3 C. a2 D. 3a3 Câu 6: Tính thể tích khối chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABD bằng 120 0 , SA vuông góc với mặt đáy và SA=2a. 3a2 3a3 A. 3a2 B. C. 3a3 D. 3 3 Câu 7: Cho tam giác ABC vuông tại A, góc CBA bằng 30 0. Khi quay tam giác ABC quanh cạnh CA thì đường gấp khúc CBA tạo thành hình nón tròn xoay. Góc ở đỉnh của hình nón đó bằng bao nhiêu độ? A. 600 B. 300 C. 150 D. 1200
- Câu 8: Cho tam giác ABC vuông tại A, góc CBA bằng 30 0, AB=a Khi quay tam giác ABC quanh cạnh CA tạo thành hình nón tròn xoay. Tính thể tích khối nón trên theo a. a3 3 a3 3 a3 3 A. B. C. a3 3 D. 3 9 9 Câu 9: Cho tam giác ABC vuông tại A, góc CBA bằng 300, AB=a Khi quay tam giác ABC quanh cạnh AB thì đường gấp khúc CBA tạo thành hình nón tròn xoay. Tính diện tích xung quanh của hình nón trên theo a. 2 a2 A. 2 a2 3 B. C. 4 a2 D. 2 a2 3 Câu 10: Cho tam giác ABC vuông tại A, góc ACB bằng 600, AB=a Khi quay tam giác ABC quanh cạnh AB thì đường gấp khúc CBA tạo thành hình nón tròn xoay. Tính diện tích toàn phần của hình nón trên theo a. A. 4 a2 B. 3 a2 C. 2 a2 D. a2 Câu 11: Cho tam giác ABC vuông tại A, AB=3a, AC=4a. Khi quay tam giác ABC quanh cạnh CA tạo thành hình nón tròn xoay. Tính thể tích khối nón trên theo a. A. 16 a3 B. 36 a3 C. 12 a3 D. a3 Câu 12: Cho tam giác ABC vuông tại A, AB=3a, AC=4a. Khi quay tam giác ABC quanh cạnh CA thì đường gấp khúc CBA tạo thành hình nón tròn xoay. Tính diện tích xung quanh của hình nón trên theo a. A. 12 a2 B. 15 a2 C. 20 a2 D. 5 a2 Câu 13: Cho tam giác ABC vuông tại A, AB=3a, AC=4a. Khi quay tam giác ABC quanh cạnh AB thì đường gấp khúc CBA tạo thành hình nón tròn xoay. Tính diện tích toàn phần của hình nón trên theo a. A. 60 a2 B. 24 a2 C. 36 a2 D. 12 a2 Câu 14: Cho tam giác ABC vuông cân tại A, BC=a2 . Khi quay tam giác ABC quanh cạnh AB tạo thành khối nón tròn xoay. Tính thể tích khối nón trên theo a. 2 a3 a3 A. B. 2 a3 C. a3 D. 3 3 Câu 15: Cắt hình nón bằng mặt phẳng qua trục của nó ta được thiết diện là tam giác đều cạnh 2a. Tính diện tích toàn phần của hình nón trên theo a. A. 3a2 B. 3 a2 C. 2 a2 D. 12 a2 Câu 16: Cắt hình nón bằng mặt phẳng qua trục của nó ta được thiết diện là tam giác vuông cân có độ dài cạnh huyền là 3 . Tính thể tích khối nón trên . 3a3 3 3 3 3 A. B. C. D. 8 8 8 8 Câu 17: Cắt khối trụ bằng mặt phẳng qua trục của nó ta được thiết diện là hình vuông cạnh 2a. Tính thể tích khối trụ trên. 2 a3 A. 2 a3 B. 2a3 C. D. a3 3
- Câu 18: Cắt hình trụ bằng mặt phẳng qua trục của nó ta được thiết diện là hình vuông cạnh 2a. Tính diện tích xung quanh của hình trụ trên theo a. A. 4a2 B. 4 a2 C. 2 a2 D. 2a2 Câu 19: Cắt hình trụ bằng mặt phẳng qua trục của nó ta được thiết diện là hình vuông cạnh 2a. Tính diện tích toàn phần của hình trụ trên theo a. A. 6 a2 B. 6a2 C. 5 a2 D. 5a2 Câu 20: Tính diện tích mặt cầu ngoại tiếp hình lập phương cạnh 23 . A. 12 B. 36 C. 144 D. 14 Câu 21: Tính thể tích khối cầu nội tiếp hình lập phương cạnh 2a. 4 4 4 A. 36 B. a3 C. r 3 D. a3 3 3 3 Câu 22: Tính diện tích mặt cầu ngoại tiếp tứ diện đều cạnh 26 . A. 12 B. 36 C. 144 D. 36 Câu 23: Cho hình chóp S.ABCD có SA vuông góc với mp(ABCD), ABCD là hình vuông cạnh bằng 23 và SA= 23 . Tính diện tích mặt cầu ngoại tiếp S.ABCD. A. 36 B. 12 C. 4 r2 D. 36 Câu 24: Cho hình chóp S.ABC có SA vuông góc với mp(ABC), SA=2, ABC là tam giác vuông tại B, AB= 3 và BC=4. Tính thể tích khối cầu ngoại tiếp S.ABC. 116 29 29 29 29 29 29 29 A. B. C. D. 3 6 6 3 Câu 25: Tìm bán kính khối cầu ngoại tiếp lăng trụ tam giác đều có các cạnh đều bằng a. 21 21a 21 21 A. B. C. a D. a 6 6 36 6 Câu 26: Tính bán kính mặt cầu ngoại tiếp lăng trụ đứng ABCD.A’B’C’D’ có đáy ABCD là hình vuông cạnh 6, cạnh AA’= 6. A. 3 3 B. 4 3 C. 2 3 D. 3 Câu 27: Cho hình chóp S.ABC có SA vuông góc với mp(ABC), SA=2, ABC là tam giác vuông tại A, AB= 3 và AC=4. Tính khoảng cách từ A đến mặt phẳng (ABC). 12 61 61 13 13 A. B. C. D. 61 144 12 12 Câu 28: Trong không gian Oxyz, mặt cầu (S): (x - 2) 2 + (y + 1)2 + (z - 3)2 = 4 . Tìm tọa độ tâm I và bán kính R của mặt cầu (S).
- A. I=(-2;1;-3); R = 4 B. I=(-2;1;-3); R = 2 C.I=(2;-1;3); R = 4 D. I=(2;-1;3); R = 2 Câu 29: Trong không gian Oxyz, mặt cầu (S): x 2 + y2 + z2 + 2x - 4y -6z -2 = 0 . Tìm tọa độ tâm I và bán kính R của mặt cầu (S): A. I=(1;-2;-3); R = 4 B. I=(-1;2;3); R = 4 C. I=(1;-2;-3); R = 12 D. I=(-1;2;3); R = 12 Câu 30: Trong không gian Oxyz, cho mặt cầu (S)có tâm I(1;0;3) và điểm M(1;3;0) nằm trên mặt cầu (S). Viết phương trình mặt cầu (S). A. (x - 1)2 + y2 + (z - 3)2 = 3 2 B. (x - 1)2 + (y - 3)2 + (z - 3)2 = 3 2 C. (x - 1)2 + y2 + (z - 3)2 = 18 D. (x - 1)2 + (y - 3)2 + (z - 3)2 = 18 Câu 31. Trong không gian Oxyz, cho bốn điểm A(-1;-2;3); B(1;0;3); C(1;-2;1), D(-1;0;3) . Tìm tọa độ tâm I của mặt cầu ngoại tiếp tứ diện A.BCD. A. I(1;2;3) B. I(-1;-2;3) C. I(1;-2;-3) D. I(1;-2;3) Câu 32: Trong không gian Oxyz, cho bốn điểm A(-1;-2;3); B(1;0;3); C(1;-2;1), D(-1;0;3) . Tìm bán kính của mặt cầu ngoại tiếp tứ diện A.BCD. A. R=2 B. R=4 C. R = 2 D. R = 3 Câu 33: Trong không gian Oxyz, mặt phẳng (P) qua M(1;-2;3) và song song với Oxy. Viết phương trình mặt phẳng (P). A. x - 1 = 0 B. z - 3 = 0 C. y + 2 =0 D. x - 2y + 3z = 0 Câu 34: Trong không gian Oxyz, cho tiếp tứ diện A.BCD có A(1;-2;0); B(1;0;3); C(1;0;1), D(2;1;3) . Mặt phẳng (P) chứa cạnh AB và song song với cạnh CD. Tìm tọa độ véc tơ pháp tuyến của (P). A. u (1; 3;2) B. n (1;3;2) C. v (7;3;2) D. a ( 1;3;2) Câu 35: Trong không gian Oxyz, cho ba điểm A(1;0;0); B(0;2;0); C(0;0;-3) . Viết phương trình mặt phẳng (ABC). A. x + 2y - 3z = 0 B. x + 2y - 3z - 1 = 0 C. 6x + 3y -2z - 1 = 0 D. 6x + 3y - 2z - 6 = 0 Câu 36: Trong không gian Oxyz, cho ba điểm A(3;2;1); B(-3;2;5); C(3;1;-3) . Mặt phẳng (Q) qua A và vuông góc với đường thẳng BC. Viết phương trình mặt phẳng (Q). A. -6x + y + 8z + 8 = 0 B. -6x + y + 8z - 8 = 0 C. 3x + 2y - 8 = 0 D. 3x + 2y + 8 = 0 Câu 37: Trong không gian Oxyz, mặt phẳng (R) song song với hai đường thẳng: x 2 t x 2 y 1 z 1 : ; 2 : y 3 2t . Tìm tọa độ véc tơ pháp tuyến của (R). 2 3 4 z 1 t A. n ( 5;6;1) B. n (5; 2; 1) C. n ( 5;2;1) D. n ( 5;6;7) Câu 38: Trong không gian Oxyz, đường thẳng (d) qua gốc tọa độ O và có véc tơ chỉ phương u (1;2;3 ). Viết phương trình đường thẳng (d).
- x 1 x t x 1 t x 1 t A. d: y 2 B. d: y 2t C. d: y 2 t D. d: y 2 t z 3 z 3t z 3 t z 3 t Câu 39: Trong không gian Oxyz, đường thẳng (d) là giao tuyến của hai mặt phẳng (P): x + 2y - 3 = 0 và (Q): 2x + z - 1 = 0. Tìm tọa độ véc tơ chỉ phương của đường thẳng (d). A. u (2;1;4;) B. n (2; 1; 4) C. v (1; 5; 3) D. a ( 5; 7;5) Câu 40: Trong không gian Oxyz, đường thẳng (d) qua A(1;2;3), (d) cắt và vuông góc với đường thẳng x 2 t : y 3 2t . Tìm tọa độ véc tơ chỉ phương của (d). z 1 t A. u (1;2; 1) B. n ( 1; 2;5) C. v ( 1;4;7) D. a (3; 1;1) Hết Ghi chú: Các đáp án đã được gạch ngang phía dưới