Đề luyện thi Trung học phổ thông quốc gia môn Toán Lớp 12 - Đề số 3 (Bản đẹp)
Bạn đang xem tài liệu "Đề luyện thi Trung học phổ thông quốc gia môn Toán Lớp 12 - Đề số 3 (Bản đẹp)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_luyen_thi_trung_hoc_pho_thong_quoc_gia_mon_toan_lop_12_de.doc
Nội dung text: Đề luyện thi Trung học phổ thông quốc gia môn Toán Lớp 12 - Đề số 3 (Bản đẹp)
- ®Ò sè 3 Câu 1: Hình vẽ trên là đồ thị của hàm số nào dưới đây? A. y x2 1 B. y x4 C. 2 x2 1 y D.x 2 2 x 1 y x3 1 Câu 2: Khẳng định nào sau đây sai? 1 A. Hàm số y x3 x2 x 2017 không có cực trị 3 B. Hàm số y x có cực trị C. Hàm số y 3 x2 không có cực trị 1 D. Hàm số y có đồng biến, nghịch biến trong từng khoảng nhưng không có cực trị x2 Câu 3: Tìm số thực để đồ thị hàm số y x4 2kx2 k có ba điểm cực trị tạo thành một tam giác 1 nhận điểm G 0; làm trọng tâm? 3 1 1 1 1 A. k 1; k B. C. D. k 1; k k ; k 1 k 1; k 3 2 2 3 Câu 4: Cho hàm số bậc ba y f x có đồ thị C tiếp xúc với trục hoành như hình vẽ. Phương trình nào dưới đây là phương trình tiếp tuyến của C tại điểm uốn của nó? A. y 3x 2 B. C. D. y 3x 2 y 2x 2 y x 2 x 2 Câu 5: Xét đồ thị C của hàm số y . Khẳng định nào sau đây sai? x 1 A. Đồ thị cắt tiệm cận tại một điểm.B. Hàm số giảm trong khoảng 1;2 C. Đồ thị C có 3 đường tiệm cận.D. Hàm số có một cực trị. Câu 6: Cho hàm số y sin2 x. Khẳng định nào sau đây đúng? 1
- A. 2y' y'' 2cos 2x B. 2y' y'.tanx 0 4 C. 4D.y y'' 2 4y y'' 2 Câu 7: Nhà xe khoán cho hai tài xế ta-xi An và Bình mỗi người lần lượt nhận 32 lít và 72 lít xăng. Hỏi tổng số ngày ít nhất là bao nhiêu để hai tài xế chạy tiêu thụ hết số xăng của mình được khoán, biết rằng bắt buột hai tài xế cùng chạy trong ngày (không có người nghỉ người chạy) và cho chỉ tiêu một ngày hai tài xế chỉ chạy đủ hết 10 lít xăng? A.20 ngày B.15 ngày C. D.10 ngày 25 ngày Câu 8: Giá trị tham số thực k nào sau đây để đồ thị hàm số y x3 3kx2 4 cắt trục hoành tại ba điểm phân biệt. A. 1 k 1 B. C. k 1 D. k 1 k 1 Câu 9: Cho hàm số y f x . Đồ thị hàm số y f x nhận gốc tọa độ làm tâm đối xứng như hình vẽ bên Khẳng định nào sau đây SAI? A. Đồ thị hàm số y f x có ba điểm cực trị. B. Đồ thị hàm số y f x nhận trục tung làm trục đối xứng. C. Đồ thị hàm số y f x cắt trục hoành tại 4 điểm. D. Đồ thị hàm số y f x có hai điểm uốn. x 1 Câu 10: Cho hàm số y có đồ thị C . Tìm giá trị a để đồ thị của hàm số có đường tiệm cận ax2 1 và đường tiệm cận đó cách đường tiếp tuyến của mộtC khoảng bằng 2 1? A. a 0 B. C. D. a 2 a 3 a 1 Câu 11: Hãy nêu tất cả các hàm số trong các hàm số y sin x, y cos x, y tan x, y cot x để hàm số đó đồng biến và nhận giá trị âm trong khoảng ;0 ? 2 A. y tanx B. y sinx C., y D.c ot x y sinx, y tan x y tan x, y cosx Câu 12: Để giải phương trình: tanxtan2x 1 có ba bạn An, Lộc, Sơn giải tóm tắt ba cách khác nhau như sau: x k 2 +An: Điều kiện x k ,k ¢ 4 2 k Phương trình tanx tan2x 1 tan 2x cot x tan x x 2 6 3 2
- k Nên nghiệm phương trình là : x ,k ¢ 6 3 + Lộc: Điều kiện tanx 1. 2 tan x Phương trình tanx tan2x 1 tan x. 1 3tan2 x 1 1 tan2 x 2 1 tanx= x k ,k ¢ là nghiệm. 3 6 cosx 0 cosx 0 + Sơn: Điều kiện 2 1 . Ta có cos2x 0 sin x 2 sinx sin 2x tan x.tan 2x . 1 2sin2 x cos x cosxcos2x 2sin2x cos2x 1 2sin2 x cos x cos2x 1 sin2 x sin2 x k2 ,k ¢ là nghiệm. 4 6 6 Hỏi, bạn nào sau đây giải đúng? A. AnB.Lộc C. SơnD.An, Lộc, Sơn Câu 13: Tập hợp S của phương trình cos 2x 5cos5x 3 10cos 2x cos3x là: A. S k2 ,k ¢ B. S k2 ,k ¢ 3 6 C. D.S k ,k ¢ S k2 ,k ¢ 3 3 Câu 14: Số nghiệm của phương trình cos2x 2cos3x.sinx 2 0 trong khoảng 0; là: A. 0 B. C. D. 1 2 3 cos x a.sinx 1 Câu 15: Có bao nhiêu giá trị của tham số thực a để hàm số y có giá trị lớn nhất cos x 2 y 1. A. 0 B. C. D. 1 2 3 * Câu 16: Với n ¥ , dãy un nào sau đây không phải là một cấp số cộng hay cấp số nhân? n u1 1 n 2017 u1 1 A. u 2017n 2018 B. u 1 C. D. n n un 2018 un 1 un 1 2017un 2018 2018 Câu 17: Dãy un nào sau đây có giới hạn khác số 1 khi n dần đến vô cùng? 2017 n 2018 A. u B. u n n2 2018 n2 2016 n 2017 n n 2018 n u 2017 1 1 1 1 1 C. 1 D. un u u 1 ,n 1,2,3 1.2 2.3 3.4 n. n 1 n 1 2 1 x2016 x 2 , x 1 Câu 18: Xác định giá trị thực k để hàm số f x 2018x 1 x 2018 liên tục tại k , x 1 x 1. 2017. 2018 20016 A. k 1 B. C. D. k 2 2019 k k 2019 2 2017 3
- Câu 19: Thầy giáo có 10 câu hỏi trắc nghiệm, trong đó có 6 câu đại số và 4 câu hình học. Thầy gọi bạn Nam lên trả bài bằng cách chọn lấy ngẫu nhiên 3 câu hỏi trong 10 câu hỏi trên đê trả lời. Hỏi xác suất bạn Nam chọn ít nhất có một câu hình học là bằng bao nhiêu? 5 1 1 29 A. B. C. D. 6 30 6 30 12 2 1 Câu 20: Cho x là số thực dương. Khai triển nhị thức Niu tơn của biểu thức x ta có hệ số x của một số hạng chứa xm bằng 495 . Tìm tất cả các giá trị m? A. m 4,m 8 B. C.m D.0 m 0,m 12 m 8 3 Câu 21: Một người bắn sung, để bắn trúng vào tâm, xác xuất tầm ba phần bảy Hỏi. cả thảy 7 bắn ba lần xác xuất cần bao nhiêu, để mục tiêu trúng một lần? 48 144 199 27 A. B. C. D. 343 343 343 343 Câu 22: Trong không gian cho đường thẳng a và A, B, C, E, F, G là các điểm phân biệt và không có ba điểm nào trong đó thẳng hàng. Khẳng định nào sau đây đúng? a / /BC a BC A. a / / EFG B. a mp ABC BC EFG a AC AB / /EF a ABC C. D. ABC / / EFG ABC EFG BC / /FG a EFG Câu 23: Cho tứ diện ABCD. Gọi E, F lần lượt là trung điểm của các cạnh AC và BC .Trên mặt phẳng BCD lấy một điểm M tùy ý ( điểm M có đánh dấu tròn như hình vẽ). Nêu đầy đủ các trường hợp TH để thiết diện tạo bởi mặt phẳng MEF với tứ diện ABCD là một tứ giác? A.TH1 B. C.TH D.1,T H2 TH2,TH3 TH2 Câu 24: Giả sử là góc của hai mặt của một tứ diện đều có cạnh bằng a. Khẳng định đúng là: A. tan 8 B. C. D. tan 3 2 tan 2 3 tan 4 2 3 Câu 25: Hình nón có thiết diện qua trục là tam giác đều và có thể tích V a3. Diện tích chung 3 quanh S của hình nón đó là: 1 A. S a 2 B. C. D. S 4 a 2 S 2 a 2 S a 2 2 Câu 26: Có tấm bìa hình tam giác vuông cân ABC có cạnh huyền bằng a. Người ta muốn cắt tấm bìa đó thành hình chữ nhật MNPQ rồi cuộn lại thành một hình trụ không dáy nhu hình vẽ. 4
- Diện tích hình chữ nhật đó bằng bao nhiêu để diện tích chung quanh của hình trụ là lớn nhất? a 2 3a 2 a 2 3.a 2 A. B. C. D. 2 4 8 8 Câu 27: Cho hình chóp tam giác đều S.ABC có các cạnh bên SA, SB, SC vuông góc với nhau a3 từng đôi một. Biết thể tích của tứ diện bằng . Bán kính r mặt cầu nội tiếp của tứ diện là: 12 2a a 3 4 2a a A. r B. r C. D. r r 3 2 3 2(3 3) 3 3 2 3 3 3 2 3 Câu 28: Có một khối gỗ hình lập phương có thể tích bằng V1 .Một người thợ mộc muốn gọt giũa V2 khối gỗ đó thành một khối trụ có thể tích bằng V2. Tính tỉ số lớn nhất k ? V1 1 A. k B. C. D. k k k 4 2 4 3 Câu 29: Cho một tấm bìa hình chữ nhật có kích thước 3a, 6a. Người ta muốn tạo tâm bìa đó thành 4 hình không đáy như hình vẽ , trong đó có hai hình trụ lần lượt có chiều cao 3a,6 avà hai hình lăng trụ tam giác đều có chiều cao lần lượt 3a,6a Trong 4 hình H1, H2, H3, H4 lần lượt theo thứ tự có thể tích lớn nhất và nhỏ nhất là: A. HB.1 ,H4 C. D. H2,H3 H1,H3 H2,H4 Câu 30: Tính S log2 2016 theo a và b biết log2 7 a,log3 7 b. 2a 5b ab 2a 5b ab 5a 2b ab 2a 5b ab A. S B. C. D.S S S b a b a Câu 31: Tập nghiệm của bất phương trình log2018 x logx 2018 là: 1 1 1 0 x x A. 0 x 2018 B. C. x D.20 18 2018 2018 2018 1 x 2018 1 x 2018 Câu 32: Số nghiệm của phương trình 2018x x2 2016 3 2017 5 2018 là: A. 1 B. C. D. 2 3 4 1 1 Câu 33: Cho hai số thực a,b đều lớn hơn 1. Giá trị nhỏ nhất của biểu thức S log a log b ab 4 ab 4 9 9 1 A. B. C. D. 9 4 2 4 2 Câu 34: Với tham số thực thuộck tập nàoS dưới đây để phương trình log2 x 3 log2x cók một nghiệm duy nhât? A. S ;0 B. C. D. S (2; ) S 4; S 0; Câu 35: Hàm số nào dưới đây là một nguyên hàm của hàm số y 2sinx 2cosx cos x sin x 5
- 2sinx.2cosx 2sinx+cosx A. B.y C.2 sD.inx+ cosx C y y Ln2.2sinx+cosx y C ln 2 ln 2 Câu 36: Hàm F x nào dưới đây là nguyên hàm của hàm số y 3 x 1 4 3 4 4 A. F x x 1 3 C B. F x 3 x 1 C 4 3 3 3 C. F x x 1 3 x 1 C D. F x 4 x 13 C 4 4 2 4 f x Câu 37: Cho f x dx 2 .Tính I dx bằng: 1 1 x 1 A. I 1 B. C. D. I 2 I 4 I 2 1 Câu 38: Cho f x là hàm số chẵn liên tục trong đoạn 1;1 và f x dx 2. Kết quả 1 1 f x I dx bằng: x 11 e A. B.I C.1 D. I 3 I 2 I 4 e f x Câu 39: Cho hàm số f x liên tục trong đoạn 1;e, biết dx 1, f e 1. Ta có 1 x e I f ' x .ln xdx bằng: 1 A. B.I C.4 D. I 3 I 1 I 0 Câu 40: Cho hình H giới hạn bởi trục hoành, đồ thị của một Parabol và một đường thẳng tiếp xúc Parabol đó tại điểm A 2;4 , như hình vẽ bên dưới. Thể tích vật thể tròn xoay tạo bởi khi hình H quay quanh trục Ox bằng: 16 32 2 22 A. B. C. D. 15 5 3 5 Câu 41: Cho bốn điểm M, N,P,Q là các điểm trong mặt phẳng phức theo thứ tự biểu diễn các số i,2 i,5,1 4i. Hỏi, điểm nào là trọng tâm của tam giác tạo bởi ba điểm còn lại? A. M B. N C. D. P Q Câu 42: Trong các số phức: 1 i 3 , 1 i 4 , 1 i 5 , 1 i 6 số phức nào là số phức thuần ảo? A. 1 i 3 B. C. D. 1 i 4 1 i 5 1 i 6 Câu 43: Định tất cả các sốthực m đểphương trình z2 2z 1 m 0 có nghiệm phức z thỏa mãn z 2. A. m 3 B. C. m D.3, m 9 m 1, m 9 m 3,m 1,m 9 6
- Câu 44: Cho z là số phức thỏa mãn z m z 1 m và số phức z ' 1 i. Định tham số thực m để z z ' là lớn nhất. 1 1 1 A. m B. C. D. m m m 1 2 2 3 Câu 45: Trong không gian với hệ tọa độ Oxyz, cho ba điểm A 1;2;0 , B 2;1;1 , C 0;3; 1 . Xét 4 khẳng định sau: I. BC 2AB II. Điểm B thuộc đoạn AC III. ABC là một tam giác IV. A,B,C thẳng hàng A. 1 B. C. D. 2 3 4 x 1 y 7 z 3 Câu 46: Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d : và 1 2 1 4 d2 là giao tuyến của hai mặt phẳng 2x 3y 9 0, y 2z 5 0 . Vị trí tương đối của hai đường thẳng là: A. Song songB. Chéo nhauC. Cắt nhauD. Trùng nhau Câu 47: Trong không gian với hệ trục tọa độ Oxyz ,phương trình mặt cầu S có tâm nằm trên x y 1 z 2 đường thẳng d : và tiếp xúc với hai mặt phẳng 1 1 1 P : 2x z 4 0, Q :x 2y 2 0 là: A. S : x 1 2 y 2 2 z 3 2 5 B. S : x 1 2 y 2 2 z 3 2 5 C. D. S : x 1 2 y 2 2 z 3 2 5 S : x 1 2 y 2 2 z 3 2 3 Câu 48: Trong không gian với hệ tọa độ Oxyz , cho hai điểm A 2;1;1 ,B 0;3; 1 . Điểm M nằm trên phẳng P 2x y z 0 sao cho MA MB nhỏ nhất là: A. 1;0;2 B. C. 0;1;3 D. 1;2;0 3;0;2 Câu 49: Trong không gian với hệ tọa độ Oxyz , cho hai mặt phẳng P : x 2y 2z 2018 0, Q : x my m 1 z 2017 0. Khi hai mặt phẳng P và Q tạo với nhau một góc lớn nhất thì điểm M nào dưới đây nằm trong Q ? A. M 2017;1;1 B. C. D.M 2017; 1;1 M 2017;1; 1 M 1;1; 2017 Câu 50: Trong không gian với hệ tọa độ Oxy , cho hai đường thẳng chéo nhau x 4 2t x 1 d1 : y t , d2 : y t ' . Phương trình mặt cầu có bán kính nhỏ nhất tiếp xúc với cả hai z 3 z t ' đường thẳng trên là: 2 2 3 2 2 9 3 2 2 9 A. x y z 2 B. x y z 2 2 4 2 4 2 2 3 2 2 3 3 2 2 3 C. D. x y z 2 x y z 2 2 2 2 2 7
- Tổ Toán – Tin MA TRẬN TỔNG QUÁT ĐỀ THI THPT QUỐC GIA MÔN TOÁN 2018 Mức độ kiến thức đánh giá Tổng số STT Các chủ đề Nhận Thông Vận dụng câu hỏi Vận dụng biết hiểu cao 1 Hàm số và các bài toán 1 4 4 1 10 liên quan 2 Mũ và Lôgarit 0 0 3 2 5 3 Nguyên hàm – Tích 0 1 3 2 6 phân và ứng dụng Lớp 12 4 Số phức 1 1 1 1 4 ( %) 5 Thể tích khối đa diện 0 2 2 3 8 6 Khối tròn xoay 0 0 0 0 0 7 Phương pháp tọa độ 1 1 2 2 6 trong không gian 8 Bài toán thực tế 0 0 1 0 1 1 Hàm số lượng giác và 1 2 0 0 3 phương trình lượng giác 2 Tổ hợp-Xác suất 0 1 2 0 3 3 Dãy số. Cấp số cộng. 0 1 1 1 3 Cấp số nhân 4 Giới hạn 0 0 0 0 0 5 Đạo hàm 0 0 1 0 1 Lớp 11 6 Phép dời hình và phép 0 0 0 0 0 8
- ( %) đồng dạng trong mặt phẳng 7 Đường thẳng và mặt 0 1 0 0 1 phẳng trong không gian Quan hệ song song 8 Vectơ trong không gian 0 0 0 0 0 Quan hệ vuông góc trong không gian Tổng Số câu 4 14 20 12 50 Tỷ lệ 8% 28% 40% 24% Đáp án 1-A 2-C 3-C 4-B 5-C 6-D 7-A 8-B 9-C 10-D 11-C 12-B 13-D 14-A 15-B 16-D 17-A 18-B 19-A 20-C 21-B 22-B 23-C 24-D 25-D 26-D 27-B 28-C 29-A 30-A 31-C 32-B 33-B 34-B 35-B 36-C 37-C 38-A 39-D 40-A 41-B 42-D 43-D 44-B 45-B 46-C 47-A 48-C 49-A 50-B LỜI GIẢI CHI TIẾT Câu 1: Đáp án A Đồ thị hàm số có dạng parabol nhận Oy làm trục đối xứng nên là hàm số chẵn. Lại có hàm số đi qua điểm 2; 5 nên trong 4 phương án ta chọn được hàm số y x2 1 Câu 2: Đáp án C Hàm số y 3 x2 có điểm cực trị x 0. Câu 3: Đáp án C x 0 Xét hàm số y x4 2kx2 k có y' 4x3 4kx ; y' 0 2 x k Với k 0 thì hàm số có 3 điểm cực trị là x 0, x k, x k .Gọi A,B,C là 3 điểm cực trị 2 2 1 của đồ thị hàm số, ta có: A 0; k , B k; k k ,C k, k k . Để G 0; là trọng tâm 3 0 k k 3.0 k 1 của ABC thì 1 1 . k 2 k2 k 3. k 3 2 Câu 4: Đáp án B Từ đồ thị hàm số ta suy ra y f x x3 3x 2 Đạo hàm: f ' x 3x2 3 Phương trình đường thẳng đi qua điểm uốn A 0; 2 của đồ thị hàm số y f x là: y x 0 .f ' 0 2 y 3x 2 Câu 5: Đáp án C 9
- x 2 Đồ thị hàm số y chỉ có 2 đường tiệm cận là x 1 và y 1. x 1 Câu 6: Đáp án D Xét hàm số y sin2 x có y' sin 2x, y'' 2cos2x và y''' 4sin 2x Khi đó xét từng đáp án: *2y' y'' 2sin 2x 2cos2x 2 2cos 2x 4 *2y y'.tanx=2sin2x sin 2x.tanx 2sin2 x 2sin x cos x.tanx=4sin2x *4y y'' 4sin2 x 2cos2x 2 2cos2x 2cos2x 2 4cos2x *4y' y''' 4sin 2x 4sin 2x 0 Câu 7: Đáp án A Gọi x, y lần lượt là số lít xăng mà An và Bình tiêu thụ trong 1 ngày. Ta có x y 10 y 10 x. Số ngày mà 2 người tiêu thụ hết số xăng là: 32 72 f x Ta có: f ' x 0 x 4 y 6. Vậy số ngày ít nhất cần tìm là f 4 20 x 10 x (ngày). Câu 8: Đáp án B x 4 Để phương trình x3 3kx2 4 0 có 3 nghiệm phân biệt thì ta có:x3 3kx2 4 0 k . 3 3x2 x 4 1 8 Xét hàm số f x có y' ; y' 0 x 2. 3 3x2 3 3x2 Bảng biến thiên: x 0 2 + 0 + y 1 x 4 Từ đó suy ra với k 1 thì đồ thị hàm số f x cắt y ktại 3điểm phân biệt hay đồ thị 3 3x2 hàm số y x3 3kx 4 cắt trục hoành tại3 điểm phân biệt. Câu 9: Đáp án C Đồ thị hàm số có 3điểm cực trị là đúng vì f ' x 0 có 3 nghiệm phân biệt. Đồ thị hàm số nhận Oy làm trục đối xứng là đúng vì có 2 cực trị đối xứng nhau qua O. Đồ thị hàm số có 2 điểm uốn là đúng vì f ' x có 2 cực trị. Câu 10: Đáp án D 1 Ta tìm được đường tiệm cận của đồ thị hàm số là y với a 0. Khi đó tiếp tuyến tại điểm x a 0 có khoảng cách đến tiệm cận tiếp tuyến có hệ số góc bằng 0 ax x 1 ax2 1 2 y' 0 Có: y' ax 1 ax2 1 1 y' 0 ax2 1 ax x 1 x . a 10
- 1 1 1 1 Xét x y x a 1. 0 a 0 1 a a. 1 a 2 1 1 Để khoảng cách giữa 2 đường thằng đó là 2 1 thì: 1 2 1 a 1. a a Câu 11: Đáp án C Các hàm số thỏa mãn là y sinx và y tan x. Câu 12: Đáp án B Bạn An giải sai vì chưa có điều kiện cho cot x. Bạn Lộc giải đúng. Bạn Sơn giải sai vì đã dùng phương trình hệ quả chứ không phải phương trình tương đương. Câu 13: Đáp án D cos2x 5cos5x 3 10cos 2x cos3x cos2x 5cos5x 3 5 cos x cos5x 1 cos x 2cos2x 1 3 5cos x 0 2 x k2 3 cosx=2 Câu 14: Đáp án A cos2x 2cos3x.sinx 0 cos2x sin 2x sin 4x 2 0 cos2x sin 2x sin 4x 2 0 Xét hàm số f x cos2x sin 2x sin 4x 2 trên 0; ta thấy f x 0 phương trình đã cho vô nghiệm. Câu 15: Đáp án B cos x a sinx 1 cos x 2 a sinx 1 a sinx-1 Ta có: y 1 cos x 2 cos x 2 cos x 2 1 Theo giả thiết : a sinx 0 sinx 1 a a 2a cos x sinx y' 0 a 2acosx sinx 0 2 cos x 2 2 1 1 Từ 1 và 2 suy ra: a 2a 1 0 a 1. a 2 a Vậy có 1 giá trị duy nhất thỏa mãn là a 1. Câu 16: Đáp án D u1 1 Dãy un : không là cấp số cộng cũng không là cấp số nhân. Thật vậy, ta xét un 1 2017un 2018 un 1 un 1 un và có un 1 un 2017un 2018 un 2016un 2018 un u 2017u 2018 2018 n 1 n 2017 un un un Cả hai biểu thức đều không phải hằng số, vậy không tồn tại công bội hay công sai. Câu 17: Đáp án A Xét các dãy un , ta có: 2017 n 2018 n 2018 * Với u lim u 1. n 2017 n 2017 n 2018 n n n 11
- u n n2 2018 n2 2016 n n n2 2018 n2 2016 * Với lim u lim n 2 2 n 2018 n 2016 2n 2n lim 1. n2 2018 n2 2 16 n2 n2 u 2017 1 * Với un : 1 , giả sử dãy un có giới hạn hữu hạn, đặt lim un a. u u n 1 2 n 1 1 1 Từ công thức truy hồi u u 1 lấy giới hạn 2 vế ta được a a 1 a 1. n 1 2 n 2 Vậy lim un 1. * Với 1 1 1 1 1 1 1 1 1 1 1 u 1 lim u 1 0 1. n 1.2 2.3 3.4 n n 1 2 2 2 3 n n 1 n 1 n Câu 18: Đáp án A Để f x liên tục tại x 1 thì limf x f 1 x 1 x2016 x 1 2016x 1 Ta có: limf x lim lim 2 2019 x 1 x 1 x 1 1009 1 2018x 1 x 2018 2018x 1 2 x 2018 Vậy k 2 2019. Câu 19: Đáp án A 3 Bạn Nam chọn 3 trong 10 câu nên C10 120. Gọi A :”Bạn Nam chọn ít nhất một câu hình học.” Xét biến cố đối của A là A : Bạn Nam không 3 chọn câu hình học nào.” A C6 20. 20 1 1 5 Xác xuất của A là P A A P A 1 P A 1 . 120 6 6 6 Câu 20: Đáp án C k k 2 12 k 1 k 24 2k k k 24 3k Số hạng thứ k 1 trong khai triển là: C12 x . C12.x .x C12x . x m k 12! k 4 Hệ số của số hạng x là: 495 C12 495 495 k! 12 k ! k 8 Khi đó m 24 3k sẽ có 2 giá trị là m 0 và m 12. Câu 21: Đáp án B 3 4 Xác xuất bắn trúng là Xác xuất bắn trượt là . Vậy xác xuất để mục tiêu trúng 1 lần là 7 7 2 3 4 144 3. . . 7 7 323 Câu 22: Đáp án B Câu 23: Đáp án C Để thiết diện tạo bởi mặt phẳng MEF với tứ diện ABCD là một tứ giác khi MFcắt BD .Vậy ta có TH2,TH3. 12
- Câu 24: Đáp án D Gọi G là tâm của ABC và M là trung điểm của AB . 2 a SG Có tan 3 4 2 GM 1 a 3 3 4 Câu 25: Đáp án D Thiết diện trục là tam giác đều nên hình nón đó có l 2R h R 3. 3 1 1 Lại có V a3 R 2h R3 3 R3 a3 R a. 3 3 3 2 Vậy diện tích xung quanh của hình nón là: Sxq Rl a . Câu 26: Đáp án D MN AN a 2x AN a 2x a a 2x Đặt MN PQ x, có AN NC x 2 BC AC a a 2 2 2 2 2 NC PC2 PN2 2x2 x2 x 3 Có Sxq SMNPQ x 3 a 2x a a 2 3 a a 2 3 Xét hàm số f x f có f f max 4 8 4 8 Câu 27: Đáp án B Thể tích hình chóp S.ABC là: 1 a3 a V .SA.SB.SC SA SB SC AB BC AC a 6 2 6 12 3 2 2 2 6 2 1 a a 2 3 a 3 3 Ta có: Stp SSAB SSBC SSAC SABC 3. . 2 3 2 4 2.3 4 3 1 3V 3a3 3 3 a a 3 4 Vậy V r.S r : 3 tp S 12 3 tp 2 4 2 3 3 Câu 28: Đáp án C Để tỉ số lớn nhất thì V2 phải là thể tích của khối trụ có 2đáy nằm trên 2 mặt phẳng của hình lập phương, và có chiều cao bằng độ dài cạnh của hình lập phương. Giả sử hình lập phương có cạnh 2 3 a 3 V2 bằng a thì V1 a và V2 a. .a Vậy tỉ số lớn nhất k . 2 4 V1 4 Câu 29: Đáp án A 2 3a 27a3 H1 có thể tích là : V1 3a 2 3a 27a3 H2 có thể tích là : V2 6a 2 2 2a 2 3 H3 có thể tích là : V 3a. 3a3 3 3 4 a 2 3 3a3 3 H4 có thể tích là : V 6a. 4 4 2 13
- Vậy V1 V3 V2 V4. Câu 30: Đáp án A 5 2 2 Ta có: log2 2016 log2 2 .3 .7 5 log2 3 log2 7 2a 2a 5b ab 5 2log 7.log 3 log 7 5 a . 2 7 2 b b Câu 31: Đáp án C x 0 Điều kiện: x 1 1 x 2018 log2 1 0 log x 1 Có: log x log 2018 2018 0 2018 2018 x 1 log2018 x log2018 x 1 0 x 2018 Câu 32: Đáp án B Xét hàm số f x 2018x x2 có f ' x 2018x 2x và f '' x 2018x ln2 2018 2 0 Vì f '' x 0 nên f ' x 0 có tối đa 1 nghiệm f x 0 có tối đa 2 nghiệm. Lại có vế phải là hằng số lớn hơn cận dưới của f x nên phương trình đã cho có hai nghiệm. Câu 33: Đáp án B 1 1 1 1 4 4 S loga ab logb a b log a log b ab 4 ab 1 1 5 1 5 1 9 S 1 loga b logb a loga b 2 4 4 4 4loga b 4 4 4 a 1 * Do loga b loga 1 0 b 1 9 1 2 1 1 2 * Smin loga b log a b loga b b a a b 4 4loga b 4 2 Câu 34: Đáp án B Điều kiện: x 3 2 3 2 3 2 k log2 x 2 log2 x k log2 x 3x k x 3x 2 3 2 2 x 0 Xét hàm số f x x 3x có f ' x 3x 6x ; f ' x 0 x 2 Bảng biến thiên: x 2 0 y' + 0 - 0 + y 4 0 2k 4 Từ bảng biến thiên ta tìm được k 2 k 2 0 Vậy tập hợp S các số thực k là S 2; Câu 35: Đáp án B 14
- 2sinx 2cosx 2sinx 2cosx cos x sinx dx 2sinx+cosx d sinx+cos x C ln 2 Câu 36: Đáp án C Đặt t 3 x 1 x t3 1 dx 3t2dt 3 Khi đó ta có 3 x 1dx t.3t.dt t4 C 4 3 Hồi biến, ta được F x x 1 3 x 1 C 4 Câu 37: Đáp án C Đặt x t x t2 dx 2tdt . Từ đó suy ra: 4 f x 2 f t 2 2 I dx .2tdt 2 f t dt 2 f x dx 4. 1 x 1 t 1 1 Câu 38: Đáp án A Cách 1: Đặt t x dt dt. Đổi cận x 1 t 1;x 1 t 1. Ta được: 1 1 1 1 1 et 1 ex I f x dx f t dt f t dt f x dx. x t t x 11 e 1 1 e 11 e 11 e 1 1 1 ex 1 Do đó: 2I f x dx f x dx f x dx 4 I 2 x x 11 e 11 e 1 1 2 4 Cách 2: Chọn h x x2 làm hàm chẵn. Ta có x2dx , do đó f x h x 6x2. 1 3 3 1 f x 1 6x Khi đó dx dx 2. x x 11 e 11 e Lưu ý: Với cách làm này, các em chỉ cần nắm rõ nguyên tắc tìm một hàm số đại diện cho lớp hàm số thỏa mãn giả thiết bài toán là có thể dễ dàng tìm được kết quả bài toán bằng máy tính hoặc bằng phương pháp cơ bản với hàm số y f x khá đơn giản. Đối với bài toán này ta c thể chọn hàm số h x 1 cho đơn giản hơn nữa. Câu 39: Đáp án D dx u ln x du Đặt x dv f ' x dx v f x e e f x e f x f ' x ln xdx f x ln x e dx f e dx 1 1 0. 1 1 1 x 1 x Câu 40: Đáp án A Parabol có phương trình là y x2. Thể tích vật thể tròn xoay quanh tạo bởi hình H quay quanh trục Ox bằng: 2 1 2 16 16 V f 2 x dx .1.42 x4dx 0 3 0 3 15 Câu 41: Đáp án B Có M 0; 1 , N 2;1 ,P 5;0 ,Q 1;4 . Từ công thức trọng tâm ta có N 2;1 chính là trọng tâm của tam giác tạo bởi 3điểm còn lại. Câu 42: Đáp án D Ta có : 1 i 6 8i là số thuần ảo. 15
- Câu 43: Đáp án D Xét phương trình z2 2z 1 m 0 có ' m. * Trường hợp 1:m 0 thì: z 2 là nghiệm m 1. z 2 là nghiệm m 9 * Trường hợp 2 :m 0 z 1 (loại). * Trường hợp 3:m 0 z1,2 1 i m. m 3 (loai) z 1 m 2 m 3 . m 3 Vậy m 1;m 9;m 3. Câu 44: Đáp án B Vì z m z 1 m z m z 1 m nên điểm Mbiểu diễn số phức thuộc trung trực 1 của A m;0 và B 1 m;0 . Do đó điểm M thuộc đường thẳng x m. z z ' nhỏ nhất 2 1 M N 1;1 (N ' là điểm biểu diễn số phức z ' ) nên m . 2 Câu 45: Đáp án B Ta có BC 2;2; 2 ;AB 1; 1;1 Từ đó suy ra BC BC 2 3 2 AB 2AB khẳng định I là đúng. Có BC 2AB 3 điểm A,B,C thẳng hang và điểm A thuộc đoạn BC. Từ đó suy ra khẳng định IV đúng và II,III là sai. Vậy có tất cả 2 khẳng định đúng. Câu 46: Đáp án C x 1 y 7 z 3 d : đi qua điểm M 1;7;3 và có một véc tơ chỉ phương là u1 2;1;4 . 1 2 1 4 x 12 y 5 z Giao tuyến d của 2 mặt phẳng 2x 3y 9 0, y 2z 5 0 là: qua 2 3 2 1 M ' 12; 5;0 và có một véc tơ chỉ phương là u2 3; 2;1 . Ta có u ,u 9;10; 7 0. Xét tiếp u ;u .MM ' 9.11. 10. 12 7. 3 0 1 2 1 2 Vậy d1 và d2 cắt nhau. Câu 47: Đáp án A Gọi O là tâm của mặt cầu S , vì O d O t;1 t;2 t . 2.t 2 t 4 t 2 1 t 2 d O, P d O, Q 22 02 1 2 12 2 2 02 t 6 t 4 t 1 Khi đó O 1;2;3 và R d O, P d O, Q 5. Vậy S : x 1 2 y 2 2 z 3 2 5. Câu 48: Đáp án C Thử các đáp án, ta được M 1;2;0 thỏa mãn điều kiện đề bài. Câu 49: Đáp án A 16
- Gọi là góc giữa mặt phẳng, có: np .nQ 1.1 2m 2 m 1 3 cos cos np ,nQ n . n 2 2 2 2 2 2 3 1 2m2 2m 1 p Q 1 2 2 . 1 m m 1 1 2 m2 m 1 1 1 Ta có cos m . max 2 2 1 1 1 Với m thì Q :x y z 2017 0. Lúc này Q sẽ chứa điểm M 2017;1;1 . 2 2 2 Câu 50: Đáp án B Gọi A,B là 2 điểm nút của đoạn thẳng vuông góc chung với A d1,B d2. Có :A 4 2a;a;3 , B 1;b; b AB 2a 3;b a; b 3 . Ta có hệ phương trình sau: AB d1 AB.d1 0 2 2a 3 1 b a 0 b 3 0 a 1 AB d 0 2a 3 1 b a 1 b 3 0 b 1 2 AB.d2 0 Vậy A 2;1;3 ,B 1; 1;1 . 3 3 Khi đó tâm I của mặt cầu là trung điểm AB I ;0;2 .Bán kính mặt cầu là R IA IB . 2 2 2 3 2 2 9 Vậy phương trình mặt cầu cần tìm là: x y z 2 2 4 17