Đề kiểm tra môn Toán Lớp 8 - Học kì 2 - Năm học 2018-2019 - Sở giáo dục và đào tạo Bắc Giang
Bạn đang xem tài liệu "Đề kiểm tra môn Toán Lớp 8 - Học kì 2 - Năm học 2018-2019 - Sở giáo dục và đào tạo Bắc Giang", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_kiem_tra_mon_toan_lop_8_hoc_ki_2_nam_hoc_2018_2019_so_gia.doc
Nội dung text: Đề kiểm tra môn Toán Lớp 8 - Học kì 2 - Năm học 2018-2019 - Sở giáo dục và đào tạo Bắc Giang
- SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ KIỂM TRA CHẤT LƯỢNG HỌC KỲ II BẮC GIANG NĂM HỌC 2018-2019 Môn: Toán lớp 8 Thời gian làm bài: 90 phút Câu 1. (3,0 điểm) 1. Giải các phương trình sau: a.8x 13 5x 6 2x 3 5 4 b. (x 2)(x 2) x 2 x 2 2. Giải phương trình3 2x 4x 1 . Câu 2. (2,0 điểm) 1. Cho a .2020 2019a 2018 2019b 2. Giải bất phương trình12 3x(1 x) 3x2 6x . Câu 3. (1,5 điểm) Một ô tô đi từ A đến B với vận tốc trung bình 60 km/h. Lúc trở về vẫn trên quãng đường đó, ô tô từ B về A đi với vận tốc nhỏ hơn vận tốc lúc đi 20 km/h nên thời gian lúc trở về hết nhiều hơn lúc đi là 30 phút. Tính độ dài quãng đường AB. Câu 4. (3,0 điểm) Cho tam giác ABC vuông tại A, đường cao AH, đường phân giác AD. Kẻ DK vuông góc với AC (K thuộc AC). 1. Chứng minh ABC đồng dạng HAC . 2. Giả sử AB = 6 cm, AC = 8 cm. Tính độ dài đoạn BD. 3. Chứng minh AC.AD = 2 AB.CK. Câu 5. (0,5 điểm) Cho ba số x, y và z thỏa mãn x + y + z = 0. Chứng minh rằng 2(x5 + y5 + z5) = 5xyz(x2 + y2 + z2). Hết Họ và tên học sinh: Số báo danh:
- SỞ GIÁO DỤC VÀ ĐÀO TẠO HƯỚNG DẪN CHẤM BẮC GIANG BÀI KIỂM TRA CHẤT LƯỢNG HỌC KÌ II NĂM HỌC 2018 - 2019 MÔN: TOÁN LỚP 8 Lưu ý khi chấm bài: Dưới đây chỉ là sơ lược các bước giải và thang điểm. Bài giải của học sinh cần chặt chẽ, hợp logic toán học. Nếu học sinh làm bài theo cách khác hướng dẫn chấm mà đúng thì chấm và cho điểm tối đa của bài đó. Đối với bài hình học (câu 4), nếu học sinh vẽ sai hình hoặc không vẽ hình thì không được tính điểm. Hướng dẫn giải Điểm Câu 1 (3 điểm) a)Ta có: 8x 13 5x 6 8x 5x 6 13 0,25 7 3x 7 x 0,5 3 7 Vậy phương trình đã cho có nghiệm duy nhất x . 0,25 3 b) ĐKXĐ: x 2 2x 3 5 4 (x 2)(x 2) x 2 x 2 1 0,25 2x 3 5(x 2) 4(x 2) (2 điểm) (x 2)(x 2) (x 2)(x 2) (x 2) x 2 2x 3 5x 10 4x 8 0,25 2x 5x 4x 8 3 10 7x 1 1 0,25 x 7 Đối chiếu điều kiện 0,25 KL: . Xét phương trình: 3 2x 4x 1 (1) 3 +) Với 3 2x 0 x Thì 3 2x 3 2x 2 0,25 Khi đó phương trình (1) trở thành: .3 2x 4x 1 2x 4x 1 3 6x 2 2 0,25 1 3 (1 điểm) x ( Thỏa mãn x ) 3 2 3 +) Với 3 2x 0 x Thì 3 2x 3 2x 2 0,25 Khi đó phương trình (1) trở thành: 3 2x 4x 1 2x 4x 1 3 0,25 2x 4
- 3 x 2 (Không thỏa mãn x ) 2 1 Vậy tập nghiệm của phương trình đã cho là S 3 Câu 2 (2 điểm) Ta có: a 2020 2019a 2018 2019b 0,25 12 3x(1 x) 3x2 6x 0,25 12 3x 3x2 3x2 6x 2 (1 điểm) 3x 12 0,5 x 4 Kết luận: 0,25 Câu 3 (1,5 điểm) Gọi độ dài quãng đường AB là x( km); ĐK: x > 0 0,25 x Thời gian ô tô đi từ A đến B là: (giờ) 0,25 60 Vì từ B về A ô tô đi với vận tốc nhỏ hơn vận tốc lúc đi 20 km/h nên vận tốc 0,25 lúc về là 40 km/h. x Thời gian lúc từ B về A là: (giờ ) (1,5 điểm) 40 1 Vì thời gian lúc về nhiều hơn thời gian lúc đi 30 phút ( giờ) nên ta có 2 0,25 x x 1 phương trình: - 40 60 2 Giải phương trình tìm được x = 60 (thoả mãn ĐK) 0,5 kết luận : . Câu 4 (3 điểm) Hình vẽ: A K B H D C Do Δ ABC vuông tại A nên B· AC = 900 a · 0 (1 điểm) AH là đường cao trong Δ ABC => AHC = 90 Xét Δ ABC và Δ HAC có:
- B· AC = A· HC = 900 0,75 Cµ chung Do đó: Δ ABC Δ(g.g)HA C 0,25 Áp dụng định lý Pitago vào tam giác vuông ABC tại A, ta có: 0,25 BC2 = AB2 + AC2 . Thay số tính được BC = 10 (cm ) Gọi độ dài cạnh BD là: x ( cm ) Khi đó: DC= 10 – x (cm) b Áp dụng tính chất đường phân giác AD trong Δ ABC 0,5 (1 điểm) BD DC x 10 x Ta có: Hay AB AC 6 8 30 Giải phương trình tìm được x = ( cm ) 7 0,25 30 Vậy BD = ( cm ) 7 Ta có : DK // AB ( Cùng vuông góc với AC) Áp dụng định lý Ta lét vào Δ ABC có DK // AB 0,25 DK CK Ta được : (1) AB AC c Chứng minh được Δ ADK vuông cân tại K => AK = DK (2) (1 điểm) Áp dụng định lý Pitago vàoΔ ADK vuông cân tại K. 0,5 AD Suy ra : AD = 2 .DK DK (3) 2 AD CK Thay (3) vào (1) ta được : 2AB AC 0,25 AD.A C 2AB.CK Câu 5 (0,5 điểm) Vì x + y + z = 0 x + y = -z (x + y)3 = -z3 x3 + y3 + 3xy(x + y) = -z3 3xyz = x3 + y3 + z3 Do đó : 3xyz(x2 + y2 + z2) = (x3 + y3 + z3)(x2 + y2 + z2) 5 5 5 3 2 2 3 2 2 3 2 2 = x + y + z + x (y + z )+ y (z + x ) +z (x + y ) 0,25 (0,5 điểm) Mà x2 + y2 = (x + y)2 - 2xy = z2 - 2xy ( vì x + y = -z). Tương tự : y2 + z2 = x2 - 2yz ; z2 + x2 = y2 -2zx. Vì vậy : 3xyz ( x2 + y2+ z2) = x5+ y5+ z5+ x3(x2 - 2yz)+ y3(y2- 2zx) +z3(z2 - 2xy) 0,25 = 2(x5 + y5 + z5) -2xyz(x2 + y2 + z2) Suy ra : 2(x5 + y5 + z5) = 5xyz(x2 + y2 + z2) (đpcm) Tổng điểm 10