Bộ đề thi tuyển sinh vào Lớp 10 - Sở giáo dục và đào tạo Bình Định

pdf 45 trang nhatle22 4940
Bạn đang xem 20 trang mẫu của tài liệu "Bộ đề thi tuyển sinh vào Lớp 10 - Sở giáo dục và đào tạo Bình Định", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • pdfbo_de_thi_tuyen_sinh_vao_lop_10_so_giao_duc_va_dao_tao_binh.pdf

Nội dung text: Bộ đề thi tuyển sinh vào Lớp 10 - Sở giáo dục và đào tạo Bình Định

  1. Tailieumontoan.com  Điện thoại (Zalo) 039.373.2038 BỘ ĐỀ TOÁN VÀO LỚP 10 TỈNH BÌNH ĐỊNH Tài liệu sưu tầm, ngày 8 tháng 12 năm 2020
  2. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ THI TUYỂN SINH VÀO LỚP 10 PTTH BÌNH ĐỊNH NĂM HỌC 1994-1995 Đề chính thức Môn thi: Toán Thời gian làm bài: 150 phút (không kể thời gian phát đề) Bài 1: (2,0 điểm) a 3 2 1) Rút gọn biểu thức M a2 6 a 9 a 3 2) Với giá trị nào của k thì phương trình 2x2 k 9 x k 2 3 k 4 0 có nghiệm kép ( x là ẩn số) Bài 2: (1,0 điểm) Chứng minh rằng trong một hình thang thì tổng 2 cạnh bên lớn hơn hiệu của 2 đáy và nhỏ hơn tổng của 2 đường chéo. Bài 3: (1,5 điểm) x a) Không vẽ đồ thị, hãy nhận xét rằng ba đường thẳng y 3 x 1; y 1 x và y 1 2 đồng qui tại một điểm. Tìm tọa độ điểm đó. b) Với giá trị nào của m thì đường thẳng y 5 x m đồng qui với hai đường thẳng y 3 x 1 và y x 1. Bài 4: (2,5 điểm) Một mảnh đất hình chữ nhật có chu vi là 32m, nếu ta giảm bớt chiều rộng 3m và tăng chiều dài thêm 2m thì diện tích giảm mất 24m2 . Tìm các kích thước của mảnh đất ấy. Bài 5: (3,0 điểm) Cho một tam giác ABC có BC 2 a , Cˆ 45  và Aˆ 60 . Vẽ hai đường cao BE và CF . a) Chứng minh tứ giác BFEC nội tiếp đường tròn mà ta có thể xác định tâm I và bán kính. Định vị trí điểm E trên cung BC . b) Chứng minh tam giác IEF là tam giác đều. c) Tính theo a các đoạn BE,,, AB CE AE và diện tích của tam giác ABC. TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 1-
  3. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TỐT NGHIỆP THCS BÌNH ĐỊNH NĂM HỌC 1994-1995 Đề chính thức Môn thi: Toán Ngày thi: 29/05/1995 Thời gian làm bài: 150 phút (không kể thời gian phát đề) I.) LÍ THUYẾT: (2,0 điểm) Học sinh chọn một trong hai đề sau để làm bài Đề I. Chứng minh định lí: Với mọi số thực a thì a2 a 2 2 Áp dụng: Tính 2 5 2 5 Đề II. Phát biểu định lí góc nội tiếp của một đường tròn và chứng minh sự liên hệ giữa góc nội tiếp và góc ở tâm chắn cùng một cung (chỉ xét một trong ba trường hợp) II) CÁC BÀI TOÁN BẮT BUỘC: (8,0 điểm) Bài 1. (2,0 điểm) a) Giải phương trình x2 2 3 1 x 2 3 0 2x y 3 b) Giải hệ phương trình x y 6 Bài 2. (2,5 điểm) Trên cùng một hệ trục tọa độ, gọi (P) là đồ thị của hàm số y x2 và (T) là đồ thị của hàm số y x 2 a) Vẽ (P) và (T). b) Xác định tọa độ giao điểm của (P) và (T) bằng đồ thị và kiểm tra lại bằng phương pháp đại số. Bài 3. (3,5 điểm) Cho nửa đường tròn tâm O đường kính BC. Kẻ một dây BA. Gọi I là điểm chính giữa của cung BA và K là giao điểm của OI và BA. a) Chứng minh: OI song song với CA. b) Từ A kẻ đường thẳng song song với CI. Đường thẳng này cắt đường thẳng BI tại H. Chứng minh IHAK là tứ giác nội tiếp. c) Gọi P là giao điểm của đường thẳng HK với BC. Chứng minh tam giác BKP đồng dạng với tam giác BCA. TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 2-
  4. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 PTTH BÌNH ĐỊNH NĂM HỌC 1995-1996 Đề chính thức Môn thi: Toán Ngày thi: 29/06/1995 Thời gian làm bài: 150 phút (không kể thời gian phát đề) Bài 1: (1,5 điểm) 1) Rút gọn biểu thức P 2 48 3 27 75 x 1 x3 1 2) Cho biểu thức Q x 1 x x 1 Chứng minh rằng với điều kiện x 0 và x 1 biểu thức Q không phụ thuộc vào x . Bài 2: (3,5 điểm) Cho phương trình có ẩn số x ( a là tham số) 2x2 ax a 2 0 1) Chứng tỏ phương trình luôn có nghiệm x1, x 2 với mọi a. 2 2 2) Đặt T x1 x 2 x 1 x 2 a2 a a) Chứng minh T 1 4 2 b) Tìm a sao cho T 1 c) Tính giá trị nhỏ nhất của T và giá trị của a tương ứng. Bài 3: (1,5 điểm) Cho hàm số y f x với f x là một biểu thức đại số lấy giá trị là số thực với 1 2 mọi số thực x 0 . Biết rằng y f x 3 f x với mọi số thực x 0 . Tính giá trị của f 2 . x Bài 4: (3,5 điểm) Lấy một điểm M trên nữa đường tròn tâm O đường kính AB 3 a sao cho MAB 30  . Vẽ trong tam giác MAB đoạn thẳng CD a và song song với AB (điểm C nằm trên MA, điểm D nằm trên MB ). Vẽ CE song song với MB (điểm E nằm trên AB ). Vẽ CF song song với DE (điểm F nằm trên AB ). a) Tứ giác CDBE là hình gì? b) Chứng minh đường thẳng BC tiếp xúc với đường tròn qua 3 điểm ACE,,. c) Gọi I là trung điểm CD. Chứng minh rằng khi N di động trên nửa đường tròng đường kính AB thì độ dài đoạn OI không đổi. TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 3-
  5. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TỐT NGHIỆP THCS BÌNH ĐỊNH NĂM HỌC 1995-1996 Đề chính thức Môn thi: Toán Ngày thi: 29/05/1996 Thời gian làm bài: 150 phút (không kể thời gian phát đề) I) LÍ THUYẾT: (2,0 điểm) Học sinh chọn một trong hai đề sau để làm bài: Đề I. Chứng minh định lí: Nếu đường thẳng a không thuộc mặt phẳng (P) mà song song với một đường thẳng b nằm trên mặt phẳng (P) thì a song song với mặt phẳng (P) AA Đề II. 1) Chứng minh định lí: Nếu A ≥ 0 ; B > 0 thì: B B 2) Tính 2 18 3 8 6 : 2 II) CÁC BÀI TOÁN BẮT BUỘC: (8,0 diểm) Bài 1. (1,0 điểm) Viết phương trình của đường thẳng đi qua hai điểm AB 1;3 ; 5; 3 Bài 2. (3,0 điểm) Cho phương trình x2 3 x 2 m 0 1 a) Với giá trị nào của m phương trình (1) có một nghiệm là 3 b) Giải phương trình (1) khi m 6. 2 2 c) Xác định m để hai nghiệm x1; x 2 của phương trình (1) thoả mãn x1 x 2 3 d) Với giá trị nào của m thì phương trình (1) có hai nghiệm trái dấu Bài 3. (4,0 điểm) Cho nửa đường tròn tâm O đường kính AB.Gọi I là trung điểm của đoạn thẳng AO. Đường thẳng đi qua I và vuông góc với AO cắt nửa đường tròn (O) tại K. Lấy điểm C nằm giữa hai điểm I và K. AC cắt nửa đường tròn (O) tại M. Đường thẳng BM cắt KI tại D. Chứng minh: a) Tứ giác CMBI là tứ giác nội tiếp b) Tam giác AKO là tam giác đều c) MC.MA= MB. MD d) Khi nửa đường tròn (O) cố định, điểm C di động trên đoạn thẳng IK (C không trùng với I và K) thì tâm đường tròn ngoại tiếp tam giác ADC luôn luôn nằm trên một đường thẳng cố định. TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 4-
  6. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 PTTH BÌNH ĐỊNH NĂM HỌC 1996-1997 Đề chính thức Môn thi: Toán Ngày thi: 01/07/1996 Thời gian làm bài: 150 phút (không kể thời gian phát đề) Bài 1: (1,0 điểm) Cho hàm số y ax 3. Hãy xác định hệ số a, biết đồ thị của hàm số đi qua 1 điểm A ;2 . 2 x 3 Bài 2: (1,5 điểm) Cho biểu thức P với x 1; x 3 x 1 2 a) Rút gọn P. b) Tính giá trị của P nếu x 2 3 6 Bài 3: (2,5 điểm) Một người đi xe đạp đến thành phố Quy Nhơn để dự họp. Khi còn cách Quy Nhơn 30km, người đó thấy rằng: Nếu giữ nguyên vận tốc đã đi thì sẽ đến Quy Nhơn muộn 30 phút so với giờ họp, còn nếu tăng vận tốc thêm 5km/h thì sẽ đến Quy Nhơn trước giờ họp 30 phút. Tính vận tốc lúc đầu của người đi xem đạp. Bài 4: (4,0 điểm) Cho đường tròn O;. r Từ một điểm S ở ngoài đường tròn O kẻ hai tiếp tuyến SM, SN và một cát tuyến SAB với đường tròn ( MN, là tiếp điểm; AB, nằm trên đường tròn O ). a) Chứng minh MN SO. b) Gọi I là trung điểm của đoạn thẳng AB. Chứng minh 5 điểm SMNOI,,,, cùng nằm trên một đường tròn. r2 OH c) Gọi H là giao điểm của SO và MN. Chứng minh . MS2 SH d) Xác định tâm của đường tròn nội tiếp tam giác SMN. Bài 5: (1,0 điểm) Giải phương trình y2 2 y y y 4 y 6 0 . TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 5-
  7. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TỐT NGHIỆP THCS BÌNH ĐỊNH NĂM HỌC 1996-1997 Đề chính thức Môn thi: Toán Ngày thi: 29/05/1997 Thời gian làm bài: 150 phút (không kể thời gian phát đề) I) LÍ THUYẾT: (2,0 điểm) Học sinh chọn một trong hai đề sau để làm bài Đề I: Phát biểu (không chứng minh) tính chất biến thiên của hàm số y ax2 , a 0 trên tập số thực R. 3 Áp dụng: Cho hàm số y f x x2 . Sử dụng tính chất trên, hãy so sánh các giá trị sau 4 f 1 3 và f 2 3 Đề II: Phát biểu định nghĩa tiếp tuyến của đường tròn. Áp dụng: Chứng minh rằng nếu một đường thẳng là một tiếp tuyến của đường tròn thì nó vuông góc với bán kính đi qua tiếp điểm. II) CÁC BÀI TOÁN BẮT BUỘC: (8,0 diểm) Bài 1. (4,0 điểm) Cho phương trình bậc hai với ẩn số x : x2 2 x m 2 4 0 1) Chứng tỏ phương trình đã cho luôn luôn có hai nghiệm phân biệt với mọi giá trị của m. 2 2 2) Gọi x1, x 2 là hai nghiệm của phương trình đã cho. Tìm giá trị của m để x1 x 2 20 3) Giải phương trình khi m 2 Bài 2. (3,0 điểm) Cho ba điểm ABC,, thẳng hàng (B nằm giữa hai điểm A và C). Vẽ đường tròn tâm O đường kính BC; AT là tiếp tuyến của đường tròn kẻ từ A. Từ tiếp điểm T vẽ đường thẳng vuông với BC, đường thẳng này cắt BC tại H và cắt đường tròn tại điểm thứ hai là T’. Đặt OB R a) Chứng minh: OH. OA R2 b) Chứng minh TB là đường phân giác của góc ATH. c) Từ B vẽ đường thẳng song song với TC. Gọi D,E lần lựơt là giao điểm của đường HB AB thẳng vừa vẽ với TT’ và TA. Chứng minh tam giác TEA cân và ta có HC AC 2 Bài 3. (1,0 điểm) Cho x, y là hai số thực thoả mãn điều kiện x y 7 x y y2 10 0 Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P x y 1. TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 6-
  8. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO LỚP 10 PTTH BÌNH ĐỊNH NĂM HỌC 1997-1998 Đề chính thức Môn thi: Toán Ngày thi: 28/06/1997 Thời gian làm bài: 150 phút (không kể thời gian phát đề) 1x 1 Bài 1: (1,5 điểm) Cho A : x2 x x x x x 1) Tìm điều kiện của x để A có nghĩa 2) Rút gọn A. Bài 2: (1,5 điểm) Định m để phương trình m 2 x2 2 m 1 x m 3 0, m 2 có nghiệm x1, x 2 và thiết lập hệ thức giữa các nghiệm độc lập đối với m. 1 Bài 3: (3,0 điểm) Cho hàm số y x2. 2 1) Khảo sát và vẽ đồ thị P của hàm số. 2) Cho AB, là hai điểm nằm trên đồ thị P lần lượt có hoành độ là 1 và 2. 1 a) Viết phương trình đường thẳng d đi qua A và có hệ số góc bằng . 2 b) Chứng tỏ điểm B cũng nằm trên đường thẳng d. Bài 4: (3,0 điểm) Cho đường tròn tâm O đường kính AB 2 R . Gọi C là trung điểm của đoạn OA, D là điểm trên đường tròn sao cho DAB bằng 30 . Đường thẳng vuông góc với AB tại C cắt AD tạo E và cắt BD tại F. 1) Tính độ dài các đoạn FB và FC theo R. 2) Đường thẳng BE cắt FA tại K. Chứng minh tứ giác AKDB nội tiếp được đường tròn. Bài 5: (1,0 điểm) Cho tam giác ABC có BC a,,. CA b AB c Chứng minh rằng nếu a2 b 5 c 2 thì c là nhỏ nhất. TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 7-
  9. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TỐT NGHIỆP THCS BÌNH ĐỊNH NĂM HỌC 1997-1998 Đề chính thức Môn thi: Toán Ngày thi: 13/06/1998 Thời gian làm bài: 120 phút (không kể thời gian phát đề) I. LÍ THUYẾT: (2,0 điểm) Học sinh chọn một trong hai đề sau để làm bài Đề I: Phát biểu qui tắc khai phương một tích Áp dụng: Tính a) 16.25.0,36 b) 9a2 Đề II: Viết công thức tính diện tích mặt cầu. Áp dụng: Tính diện tích da để làm một quả bóng đá có đường kính 20 cm (không kể da dùng cho các chỗ ghép nối) II. CÁC BÀI TOÁN BẮT BUỘC: (8 điểm) Bài 1: (2,0 điểm) a) Giải phương trình x2 5 x 14 0 b) Tìm hai số biết rằng tổng của chúng bằng 4 và tổng các bình phương của chúng bằng 10. Bài 2: (2,0 điểm) Cho hàm số y 2 x 1 a) Vẽ đồ thị của hàm số trên b) Viết phương trình đường thẳng đi qua điểm A(1;5) và song với đồ thị hàm số đã cho. Bài 3: (3,0 điểm) Cho tam giác ABC vuông ở A. Trên cạnh AC lấy 1 điểm M; (M≠A ; M≠ C). Vẽ đường tròn đường kính MC. Nối BM và kéo dài gặp đường tròn tại D, đường thẳng DA gặp đường tròn tại điểm thứ hai là S. Chứng minh rằng: a) ABCD là một tứ giác nội tiếp b) CA là phân giác của góc SCB Bài 4: (1,0 điểm) Cho a, b , c là các số dương. Chứng minh rằng a4 b 4 c 4 a b c abc TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 8-
  10. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TỐT NGHIỆP THCS BÌNH ĐỊNH NĂM HỌC 1998-1999 Đề chính thức Môn thi: Toán Ngày thi: 12/06/1999 Thời gian làm bài: 120 phút (không kể thời gian phát đề) I. LÍ THUYẾT: (2,0 điểm) Thí sinh chọn một trong hai đề sau để làm bài Đề I: Phát biểu định nghĩa và nêu các tính chất của hàm số bậc nhất. Áp dụng: Cho hai hàm số bậc nhất: y 2 x 3 và y 5 x 1 Hỏi rằng, hàm số nào là hàm số đồng biến? Hàm số nào là hàm số nghịch biến? Vì sao? Đề II: (2,0 điểm) Chứng minh định lí: “Góc có đỉnh ở bên trong đường tròn có số đo bằng một nửa tổng số đo hai cung bị chắn giữa hai cạnh của góc và các tia đối của hai cạnh ấy” II. CÁC BÀI TOÁN BẮT BUỘC: (8,0 điểm) Bài 1: (2,0 điểm) Giải các phương trình và bất phương trình sau: a) x2 10 x x 30 b) 5 x 2 3 1 2 x 1 Bài 2: (3,0 điểm) Quãng đường từ tỉnh A đến tỉnh B dài 105 km. Một người đi xe máy và một người đi xe đạp khởi hành cùng một lúc đi từ A đến B. Vận tốc của xe máy nhanh hơn vận tốc của xe đạp 20 km/giờ nên người đi xe máy đến tính B trước người đi xe đạp 4 giờ. Tính vận tốc của mỗi xe. Bài 3: (3,0 điểm) Cho đường tròn tâm O có hai đường kính AB và CD vuông góc với nhau. Trên đoạn thẳng OB lấy một điểm H (H khác O và H khác B). Đường thẳng CH cắt đường tròn (O) tại điểm thứ hai là K. Đường thẳng vuông góc với AB tại H cắt tiếp tuyến tại K của đường tròn ở điểm I. Chứng minh rằng: a) Tứ giác OHKI nội tiếp được b) Tứ giác CHIO là hình bình hành TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 9-
  11. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TỐT NGHIỆP THCS BÌNH ĐỊNH NĂM HỌC 1999-2000 Đề chính thức Môn thi: Toán Ngày thi: 09/06/2000 Thời gian làm bài: 120 phút (không kể thời gian phát đề) I. LÍ THUYẾT: (2,0 điểm) Thí sinh chọn một trong hai đề sau để làm bài: Đề 1. Phát biểu định nghĩa căn bậc hai số học của một số a≥ 0 Áp dụng: Tính 4 Đề 2. Phát biểu định nghĩa góc nội tiếp đường tròn II. CÁC BÀI TOÁN BẮT BUỘC: (8 điểm) Bài 1: (2,5 điểm) Giải các phương trình sau: a) 3x 2 0 b) x2 8 x 15 0 Bài 2: (2,0 điểm) Cho tam giác vuông có diện tích bằng 15 m2 và tổng độ dài hai cạnh góc vuông bằng 11 m. Tìm độ dài của hai cạnh góc vuông. Bài 3: (3,5 điểm) Cho đường tròn tâm O có hai bán kính OA và OB vuông góc với nhau. M là điểm tuỳ ý trên bán kính OA, (M khác O và A). Đường thẳng BM cắt đường tròn (O) tại điểm thứ hai N. Đường thẳng vuông góc với OA tại M cắt tiếp tuyến tại N của đường tròn ở điểm C. Chứng minh rằng: a) Tứ giác OMNC nội tiếp được. b) Tứ giác BMCO là hình bình hành. c) Tích BM.BN không đổi khi M di động trên OA. TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 10-
  12. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TỐT NGHIỆP THCS BÌNH ĐỊNH NĂM HỌC 2000-2001 Đề chính thức Môn thi: Toán Ngày thi: 30/05/2001 Thời gian làm bài: 120 phút (không kể thời gian phát đề) I. LÍ THUYẾT: (2,0 điểm) Thí sinh chọn một trong hai đề sau để làm bài: Đề 1: Phát biểu qui tắc nhân các căn thức bậc hai. Áp dụng: Tính 3. 27 Đề 2: Chứng minh định lí: “Đường kính vuông góc với một dây cung thì chia dây cung ấy ra hai phần bằng nhau”. II. CÁC BÀI TOÁN BẮT BUỘC: (8,0 điểm) Bài 1: (1,5 điểm) Giải phương trình: 2x2 7 x 3 0 Bài 2: (2,5 điểm) Theo kế hoạch, một đội xe vận tải phải chở 28 tấn hàng đến một địa điểm qui định. Nhưng trong thực tế, khi tiến hành chuyên chở thì đội xe này phải điều động 2 xe đi làm việc khác, do đó mỗi xe còn lại phải chở thêm 0,7 tấn hàng. Tính số xe của đội lúc đầu. Bài 3: (3,0 điểm) Cho tam giác ABC vuông ở A. Lấy trên cạnh AC một điểm D (D không trùng với A và C). Từ điểm C vẽ một đường thẳng vuông góc với đường thẳng BD tại E. Gọi F là giao điểm của hai đường thẳng CE và BA. a) Chứng minh tứ giác ABCE là một tứ giác nội tiếp b) Chứng minh FD vuông góc với BC Bài 4: (1,0 điểm) 1 1 1 Chứng minh rằng nếu: ax3 by 3 cz 3 và 1 thì 3 ax2 by 2 cz 2 3 a 3 b 3 c x y z TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 11-
  13. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TỐT NGHIỆP THCS BÌNH ĐỊNH NĂM HỌC 2001-2002 Đề chính thức Môn thi: Toán Ngày thi: 07/06/2002 Thời gian làm bài: 120 phút (không kể thời gian phát đề) I. LÍ THUYẾT: (2,0 điểm) Thí sinh chọn một trong hai đề sau để làm bài: Đề 1: Phát biểu qui tắc khai phương của một thương. 16 36a2 Áp dụng: Tính a) b) 25 49 Đề 2: Chứng minh định lí:”Trong một tứ giác nội tiếp, tổng số đo hai góc đối diện nhau bằng hai góc vuông” II. CÁC BÀI TOÁN BẮT BUỘC: (8,0 điểm) Bài 1: (1,5 điểm) Giải phương trình : 3x2 2 x 16 0 Bài 2: (2,5 điểm) Hai lớp 9A và 9B cùng tham gia lao động trong 6 giờ thì xong công việc. Nếu để mỗi lớp làm riêng thì lớp 9A làm xong cả công việc trước lớp 9B là 5 giờ. Hỏi khi làm riêng thì mỗi lớp làm xong công việc trong thời gian bao lâu? Bài 3: (3,0 điểm) Cho tam giác ABC vuông tại A và một điểm D nằm trên cạnh AC (D không trùng với A và C). Đường tròn đường kính CD cắt BC tại E; các đường thẳng BD và AE cắt đường tròn đường kính CD này tại các điểm thứ hai là F và G. a) Chứng minh rằng tứ giác ABED là tứ giác nội tiếp. b) Chứng minh rằng AB song song với FG. Bài 4: (1,0 điểm) Tìm giá trị nhỏ nhất của biểu thức: f x x x 1 x 2 x 3 TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 12-
  14. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TỐT NGHIỆP THCS BÌNH ĐỊNH NĂM HỌC 2002-2003 Đề chính thức Môn thi: Toán Ngày thi: 08/06/2003 Thời gian làm bài: 120 phút (không kể thời gian phát đề) I. LÍ THUYẾT: (2,0 điểm) Thí sinh chọn một trong hai đề sau để làm bài: Đề 1: Phát biểu qui tắc nhân các căn thức bậc hai. Áp dụng: Tính 3. 27 Đề 2: Chứng minh định lí: “Đường kính vuông góc với một dây cung thì chia dây cung ấy ra hai phần bằng nhau”. II. CÁC BÀI TOÁN BẮT BUỘC: (8,0 điểm) Bài 1: (1,5 điểm) Giải phương trình x2 11 x 30 0 Bài 2: (2,5 điểm) Cho một khu vườn hình chữ nhật có chiều dài lớn hơn chiều rộng 6 mét. Tính chiều dài và chiều rộng của khu vườn đó biết diện tích của nó bằng 40 m2. Bài 3: (3,0 điểm) Cho tam giác ABC có góc A bằng 60. Các đường phân giác trong của góc B và góc C cắt các cạnh AC, AB của tam giác theo thứ tự tại D và E. Gọi I là giao điểm của BD với CE. Chứng minh rằng: a) Tứ giác ADIE nội tiếp được đường tròn b) Hai đoạn thẳng ID và IE bằng nhau Bài 4: (1,0 điểm) Cho x, y , z là ba số thực khác không và thoả điều kiện x y y z z x 1 1 1 . Chứng minh rằng 0 x y z TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 13-
  15. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TỐT NGHIỆP THCS BÌNH ĐỊNH NĂM HỌC 2003-2004 Đề chính thức Môn thi: Toán Ngày thi: 26/05/2004 Thời gian làm bài: 120 phút (không kể thời gian phát đề) I. LÍ THUYẾT: (2,0 điểm) Thí sinh chọn một trong hai đề sau để làm bài: Đề 1: Phát biểu qui tắc khai phương của một thương. 25 Áp dụng: Tính 64 Đề 2: Chứng minh định lí:”Trong một tứ giác nội tiếp, tổng số đo hai góc đối diện nhau bằng hai góc vuông” II. CÁC BÀI TOÁN BẮT BUỘC: (8,0 điểm) Bài 1: (1,5 điểm) Giải phương trình x2 8 x 15 0 Bài 2: (2,5 điểm) Cho một tam giác vuông có tổng độ dài hai cạnh góc vuông là 14 cm và diện tích là 24 cm2. Tìm độ dài các cạnh góc vuông của tam giác ấy. Bài 3: (3,0 điểm) Cho đường tròn tâm O đường kính AB 2 R . Kéo dài BA về phía A ta lấy một điểm P sao cho PA R . Vẽ dây BD của đường tròn (O) với BD = R. Đoạn PD cắt đường tròn (O) tại điểm thứ hai là C. a) Chứng minh hai tam giác PCB và PAD đồng dạng. b) Tính PC.PD theo R và chứng minh PC PD AD2 Bài 4: (1,0 điểm) Tìm x nguyên dương sao cho x2 x 13 là một số chính phương. TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 14-
  16. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TỐT NGHIỆP THCS BÌNH ĐỊNH NĂM HỌC 2004-2005 Đề chính thức Môn thi: Toán Ngày thi: 26/05/2005 Thời gian làm bài: 120 phút (không kể thời gian phát đề) I) LÍ THUYẾT: (2,0 điểm) Học sinh chọn một trong hai đề sau để làm bài: Đề 1: Chứng minh rằng: Nếu AB 0, 0 thì AB A B . Áp dụng: Tính 9.25 Đề 2: Chứng minh định lý: “Nếu một đường thẳng là một tiếp tuyến của một đường tròn thì nó vuông góc với bán kính đi qua tiếp điểm”. II) CÁC BÀI TOÁN BẮT BUỘC: (8,0 diểm) Bài 1: (1,5 điểm) Giải phương trình: x2 5 x –14 0 Bài 2: (2,5 điểm) Trong một phòng có 80 người họp, được sắp xếp ngồi đều trên các dãy ghế. Nếu ta bớt đi hai dãy ghế thì mỗi dãy ghế còn lại phại xếp thêm hai người mới đủ chỗ. Hỏi lúc đầu có mấy dãy ghế và mỗi dãy ghế được xếp bao nhiêu người ngồi ? Bài 3: (3,0 điểm) Cho đường tròn tâm O bán kính R có AB là đường kính cố định còn CD là đường kính di động. Gọi d là tiếp tuyến của đường tròn kẻ từ B ; d cắt các đường thẳng AC, AD lần lượt tại P và Q. a) chứng minh tứ giác CPQD nội tiếp . b) Xác định vị trí của CD để diện tích tứ giác CPQD bằng ba lần diện tích tam giác ACD. Bài 4: (1,0 điểm) Tìm tất cả các cặp số nguyên x, y thỏa mãn: 12x2 6 xy 3 y 2 28 x y TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 15-
  17. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT BÌNH ĐỊNH NĂM HỌC 2006-2007 Đề chính thức Môn thi: Toán Ngày thi: 29/06/2006 Thời gian làm bài: 120 phút (không kể thời gian phát đề) 1 1 Câu 1: (1,0 điểm) Rút gọn biểu thức A 3 27 2 3 3 3 3x 2 y 6 Câu 2: (2,0 điểm) Cho hệ phương trình: mx y 3 a) Tìm giá trị m để hệ phương trình đã cho có nghiệm duy nhất. b) Giải hệ phương trình khi m 1 Câu 3: (2,0 điểm) Hai vòi nước cùng chảy vào 1 bể thì 6 giờ đầy bể. Nếu mỗi vòi chảy một mình cho đầy bể thì vòi thứ hai cần nhiều hơn vòi thứ nhất 5 giờ. Tính thời gian mỗi vòi chảy một mình đầy bể. Câu 4: (1,0 điểm) Cho tam giác ABC vuông tại A có I là trung điểm của AC . Vẽ ID vuông góc với cạnh huyền BC,() D BC . Chứng minh AB2 BD 2 – CD 2 Câu 5: (3,0 điểm) Cho tam giác ABC có 3 góc nhọn nội tiếp trong đường tròn tâm O , có đường cao AD, BK của tam giác gặp nhau tại H . Gọi EF, theo thứ tự là giao điểm thức hai của BO và BK kéo dài với đường tròn O . a) Chứng minh EF// AC 1 b) Gọi I là trung điểm của AC. Chứng minh 3 điểm HIE, , thẳng hàng và OI BH 2 Câu 6: (1,0 điểm) Cho a, b, c là các số dương và a2 b 2 c 2 1 . Tìm giá trị nhỏ nhất của biểu bc ac ab thức: P . a b c TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 16-
  18. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT BÌNH ĐỊNH NĂM HỌC 2007-2008 Đề chính thức Môn thi: Toán Ngày thi: 25/07/2007 Thời gian làm bài: 120 phút (không kể thời gian phát đề) Câu 1: (2,0 điểm) 5 5 a) Rút gọn biểu thức A 1 5 a b2 b b) Chứng minh đẳng thức: 1với a 0; b 0 và a b . a b a b a b Câu 2: (1,5 điểm) Giải phương trình: x2 3 x 108 0 Câu 3: (2,0 điểm) Một ca nô chạy trên sông, xuôi dòng 120km và ngược dòng 120km, thời gian cả đi và về hết 11 giờ. Hãy tìm vận tốc ca nô trong nước yên lặng, biết rằng vận tốc của nước chảy là 2km/h. Câu 4: (3,5 điểm) Cho tam giác đều ABC có đường cao AH, M là điểm bất kỳ trên cạnh BC (M không trùng với B và C). Gọi P, Q theo thứ tự là chân các đường vuông góc kẽ từ M đến AB và AC, O là trung điểm của AM. Chứng minh rằng: a) Các điểm A, P, M, H, Q cùng nằm trên một đường tròn. b) Tứ giác OPHQ là hình gì? c) Xác định vị trí của M trên cạnh BC để đoạn PQ có độ dài nhỏ nhất. 2a2 3 b 2 2 b 2 3 a 2 4 Câu 5: (1,0 điểm) Cho a, b là các số dương. Chứng minh rằng 2a3 3 b 3 2 b 3 3 a 3 a b TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 17-
  19. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT BÌNH ĐỊNH NĂM HỌC 2008-2009 Đề chính thức Môn thi: Toán Ngày thi: 30/06/2008 Thời gian làm bài: 120 phút (không kể thời gian phát đề) Câu 1: (2,0 điểm). a) So sánh 25 5 và 25 9 1 1 b) Tính giá trị của biểu thức: A 2 5 2 5 Câu 2: (1,5 điểm). Gỉai phương trình: 2x2 3 x 2 0 . Câu 3: (2,0 điểm). Theo kế hoạch, một đội xe vận tải cần chở 24 tấn hàng đến một địa điểm quy định. Khi chuyên chở thì trong đội có hai xe phải điều đi làm việc khác nên mỗi xe còn lại của đội phải chở thêm 1 tấn hàng. Tính số xe của đội lúc đầu. Câu 4: (3,5 điểm). Cho đường tròn tâm O đường kính BC 2 R, A là điểm chính giữa cung BC . 1) Tính diện tích tam giác ABC theo R . 2) M là điểm di động trên cung nhỏ AC , ( MA và MC ). Đường thẳng AM cắt đường thẳng BC tại điểm D . Chứng minh rằng: a) Tích AM. AD không đổi. b) Tâm đường tròn ngoại tiếp tam giác MCD luôn nằm trên một đường thẳng cố định. Câu 5: (1,0 điểm). Cho 1 x 1. Hãy tìm giá trị lớn nhất của biểu thức: y 4 x2 x 1 3 2x 1 TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 18-
  20. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT BÌNH ĐỊNH NĂM HỌC 2009-2010 Đề chính thức Môn thi: Toán Ngày thi: 02/07/2009 Thời gian làm bài: 120 phút (không kể thời gian phát đề) Câu 1: (2,0 điểm) Giải các phương trình sau: a. 2(x 1) 4 x b. x2 3 x 2 0 Câu 2: (2,0 điểm) 1. Cho hàm số y ax b . Tìm a và b biết rằng đồ thị hàm số đã cho đi qua hai điểm A( 2;5) và B(1; 4) . 2. Cho hàm số: y (2 m 1) x m 2 a. Tìm điều kiện của m để hàm số luôn nghịch biến. 2 b. Tìm giá trị của m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng . 3 Câu 3: (2,0 điểm) Một người đi xe máy khởi hành từ Hoài Ân đi Quy Nhơn. Sau đó 75 phút một ô tô khởi hành từ Quy Nhơn đi Hoài Ân với vận tốc lớn hơn vận tốc xe máy 20km/h. Hai xe gặp nhau tại Phù Cát. Tính vận tốc của mỗi xe, giả thiết Hoài Ân cách Quy Nhơn 100km và Quy Nhơn cách Phù Cát 30km. Câu 4: (3,0 điểm) Cho tam giác ABC nội tiếp đường tròn tâm O đường kính AB. Kéo dài AC (về phía C) đoạn CD sao cho CD = AC. 1. Chứng minh tam giác ABD cân. 2. Đường thẳng vuông góc với AC tại A cắt đường tròn tâm O tại E. Kéo dài AE (về phía E) đoạn EF sao cho FE = EA. Chứng minh ba điểm D, B, F cùng nằm trên một đường thẳng. 3. Chứng minh rằng đường tròn đi qua ba điểm A, D, F tiếp xúc với đường tròn tâm O. k k Câu 5: (1,0 điểm)Với mỗi số k nguyên dương, đặt Sk 2 1 2 1 . Chứng minh rằng: SSSSm n m- n m . n với mọi m, n là số nguyên dương và m n . TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 19-
  21. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT BÌNH ĐỊNH NĂM HỌC 2010-2011 Đề chính thức Môn thi: Toán Ngày thi: 01/07/2010 Thời gian làm bài: 120 phút (không kể thời gian phát đề) Bài 1: (1,5 điểm) Giải các phương trình sau: a) 3(x 1) 2 x b) x2 5 x 6 0 Bài 2: (2,0 điểm) a) Cho phương trình x2 x 1 m 0 ( m là tham số ). Tìm điều kiện của m để phương đã cho có nghiệm. ax 2 y 2 b) Xác định các hệ số a, b biết rằng hệ phương trình có nghiệm 2; 2 . bx ay 4 Bài 3: (2,5 điểm) Một công ty vận tải điều một số xe tải để chở 90 tấn hàng. Khi đến kho hàng thì có 2 xe bị hỏng nên để chở hết lượng hàng thì mỗi xe còn lại phải chở thêm 0,5 tấn so với dự định ban đầu. Hỏi số xe được điều đến chở hàng là bao nhiêu ? Biết rằng khối lượng hàng chở ở mỗi xe là như nhau. Bài 4: (3,0 điểm) Cho tam giác ABC có 3 góc nhọn nội tiếp trong đường tròn tâm O . Kẻ các đường cao BB’ và CC’ ( B’ thuộc cạnh AC , C’thuộc cạnh AB ). Đường thẳng BC’’ cắt đường tròn tâm O tại hai điểm M và N (theo thứ tự NCBM, ’, ’, ). a) Chứng minh tứ giác BC’’ B C là tứ giác nội tiếp. b) Chứng minh AM AN . c) AM2 AC . AB Bài 5: (1,0 điểm). Cho các số a, b , c thỏa mãn các điều kiện 0 a b và phương trình a b c ax2 + bx c 0 vô nghiệm. Chứng minh rằng: 3 . b a TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 20-
  22. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT BÌNH ĐỊNH NĂM HỌC 2011-2012 Đề chính thức Môn thi: Toán Ngày thi: 30/06/2011 Thời gian làm bài: 120 phút (không kể thời gian phát đề) Bài 1. (2,0 điểm) 3x y 7 a. Giải hệ phương trình : 2x y 8 b. Cho hàm số y ax b. Tìm a và b biết rằng đồ thị của hàm số đã cho song song với đường thẳng y 2 x 3 và đi qua điểm M (2;5) . Bài 2. (2,0 điểm) Cho phương trình x2 2( m 1) x m 4 0 (m là tham số). a. Giải phương trình khi m 5 . b. Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi m. c. Tìm m sao cho phương trình đã cho có hai nghiêm x1, x 2 thỏa mãn hệ thức 2 2 x1 x 2 3 x 1 x 2 0. Bài 3. (2,0 điểm) Một mảnh đất hình chữ nhật có chiều dài hơn chiều rộng 6m và bình phương độ dài đường chéo gấp 5 lần chu vi. Tính diện tích hình chữ nhật. Bài 4. (2,0 điểm) Cho đường tròn tâm O , vẽ dây cung BC không đi qua tâm. Trên tia đối của tia BC lấy điểm M bất kì. Đường thẳng đi qua M cắt đường O lần lượt tại hai điểm N và P ( N nằm giữa M và P ) sao cho O nằm bên trong góc PMC . Trên cung nhỏ NP lấy điểm A sao cho cung AN bằng cung AP . Hai dây cung AB, AC cắt NP lần lượt tại D và E . a. Chứng minh tứ giác BDEC nội tiếp. b. Chứng minh : MB MC MN MP c. Bán kính OA cắt NP tại K . Chứng minh: MK2 MB. MC Bài 5. (2,0 điểm) x2 2 x 2011 Tìm giá trị nhỏ nhất của biểu thức: A (với x 0 ) x2 TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 21-
  23. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT BÌNH ĐỊNH NĂM HỌC 2012-2013 Đề chính thức Môn thi: Toán Ngày thi: 29/06/2012 Thời gian làm bài: 120 phút (không kể thời gian phát đề) Bài 1: (3, 0 điểm) Học sinh không sử dụng máy tính bỏ túi a) Giải phương trình: 2x – 5 = 0 y x 2 b) Giải hệ phương trình: 5x 3y 10 5 a 3 3 a 1 a2 2 a 8 c) Rút gọn biểu thức A với a 0,a 4 a 2 a 2 a 4 d) Tính giá trị của biểu thức B 4 2 3 7 4 3 Bài 2: (2, 0 điểm) Cho parabol (P) và đường thẳng (d) có phương trình lần lượt là y mx2 và y m 2 x m 1 (m là tham số, m 0). a) Với m = –1 , tìm tọa độ giao điểm của (d) và (P). b) Chứng minh rằng với mọi m 0 đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt. Bài 3: (2, 0 điểm) Quãng đường từ Quy Nhơn đến Bồng Sơn dài 100 km. Cùng một lúc, một xe máy khởi hành từ Quy Nhơn đi Bồng Sơn và một xe ô tô khởi hành từ Bồng Sơn đi Quy Nhơn. Sau khi hai xe gặp nhau, xe máy đi 1 giờ 30 phút nữa mới đến Bồng Sơn. Biết vận tốc hai xe không thay đổi trên suốt quãng đường đi và vận tốc của xe máy kém vận tốc xe ô tô là 20 km/h. Tính vận tốc mỗi xe. Bài 4: (3, 0 điểm) Cho đường tròn tâm O đường kính AB = 2R. Gọi C là trung điểm của OA, qua C kẻ dây MN vuông góc với OA tại C. Gọi K là điểm tùy ý trên cung nhỏ BM, H là giao điểm của AK và MN. a) Chứng minh tứ giác BCHK là tứ giác nội tiếp. b) Chứng minh AK.AH = R2 c) Trên KN lấy điểm I sao cho KI = KM, chứng minh NI = KB. TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 22-
  24. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT BÌNH ĐỊNH NĂM HỌC 2013-2014 Đề chính thức Môn thi: Toán Ngày thi: 30/06/2013 Thời gian làm bài: 120 phút (không kể thời gian phát đề) Bài 1: (2,0 điểm) a) Tìm điều kiện của x để biểu thức sau có nghĩa: A x 2013 2014 x b) Rút gọn biểu thức: A 20 2 80 3 45 c) Trong mặt phẳng tọa độ Oxy , đường thẳng y ax b đi qua điểm M 1; 2 và song song với đường thẳng y 3 x – 5. Tìm hệ số a và b . Bài 2: (1,0 điểm) Cho phương trình: x2 4 x m 0 , (m là tham số) (1) a) Giải phương trình khi m 3 . 1 1 b) Tìm m để phương trình (1) có hai nghiệm x1; x 2 thỏa mãn điều kiện: 2 2 2 x1 x 2 Bài 3: (2,0 điểm) Hai công nhân cùng làm một công việc trong 16 giờ thì xong. Nếu người thứ 1 nhất làm trong 3 giờ, người thứ hai làm trong 6 giờ thì họ làm được công việc. Hỏi mỗi công 4 nhân làm một mình thì trong bao lâu làm xong công việc. Bài 4: (4,0 điểm) Cho đường tròn (O;R), hai đường kính AB và CD vuông góc với nhau. Trong đoạn thẳng AB lấy điểm M(khác điểm O), đường thẳng CM cắt đường tròn (O) tại điểm thứ hai N. Đường thẳng vuông góc với AB tại M cắt tiếp tuyến tại N với đường tròn (O) ở điểm P. a) Chứng minh tứ giác OMNP nội tiếp được trong đường tròn. b) Tứ giác CMPO là hình gì? c) Chứng minh tích CM.CN không đổi. d) Chứng minh khi M di động trên đoạn thẳng AB thì P chạy trên một đường thẳng cố định. Bài 5: (1,0 điểm) Cho ba số thực a, b , c dương. Chứng minh rằng: a2 b 2 b 2 c 2 a 2 c 2 2 a b c TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 23-
  25. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT BÌNH ĐỊNH NĂM HỌC 2014-2015 Đề chính thức Môn thi: Toán Ngày thi: 28/06/2014 Thời gian làm bài: 120 phút (không kể thời gian phát đề) Câu 1. (2,5 điểm) a) Giải phương trình: 3x 5 x 1 b) Giải phương trình: x2 x 6 0 x 2 y 8 c) Giải hệ phương trình x y 1 5 d) Rút gọn biểu thức P 2 5 5 2 Câu 2. (1,5 điểm) Cho phương trình: x2 2( m 1) x m 3 0 (1) a) Chứng minh phương trình (1) luôn có hai nghiệm phân biệt với mọi giá trị của m. b) Tìm giá trị của m đế phương trình (1) có hai nghiệm đối nhau. Câu 3. (2,0 điểm) Hai đội công nhân cùng làm chung một công việc thì hoàn thành sau 12 giờ, nếu làm riêng thì thời gian hoàn thành công việc của đội thứ hai ít hơn đội thứ nhất là 7 giờ. Hỏi nếu làm riêng thì thời gian để mỗi đội hoàn thành công việc là bao nhiêu? Câu 4.(3,0 điểm) Cho đường tròn tâm O đường kính AB, trên cùng một nửa đường tròn (O) lấy 2 điếm G và E (theo thứ tự A, G, E, B) sao cho tia EG cắt tia BA tại D. Đường thẳng vuông góc với BD tại D cắt BE tại C, đường thẳng CA cắt đường tròn (O) tại điểm thứ hai là F. a) Chứng minh tứ giác DFBC nội tiếp. b) Chứng minh: BF = BG DA DG . DE c) Chứng minh : BA DE . BC Câu 5. (1,0 điểm) 1 1 1 1 1 1 1 Cho A và B 1 1 2 2 3 3 4 120 121 2 3 35 Chứng mình rằng : BA TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 24-
  26. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT BÌNH ĐỊNH NĂM HỌC 2015 - 2016 Đề chính thức Môn thi: TOÁN Ngày thi: 19/06/2015 Thời gian làm bài: 120 phút (không kể thời gian phát đề) Bài 1: (2,0 điểm) 2x y 1 a) Giải hệ phương trình: x y 1 2 1 a a 1 a b) Rút gọn biểu thức P = a . (với a 0, a 1) 1 a 1 a Bài 2: (2,0 điểm) Cho phương trình: x2 2 1– m x – 3 m 0 , m là tham số. a) Giải phương trình với m 0 b) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt với mọi giá trị m c) Tìm giá trị của m để phương trình có hai nghiệm đối nhau. Bài 3: (2,0 điểm) Trên một vùng biển được xem như bằng phẳng và không có các chướng ngại vật. Vào lúc 6 giờ có một tàu cá đi thẳng qua tọa độ X theo hướng từ Nam đến Bắc với vận tốc không đổi. Đến 7 giờ một tàu du lịch cũng đi thẳng qua tọa độ X nhưng theo hướng từ Đông sang Tây với vận tốc lớn hơn vận tốc tàu cá 12 km/h. Đến 8 giờ khoảng cách giữa hai tàu là 60km. Tính vận tốc của mỗi tàu. Bài 4: (3,0 điểm) Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp đường tròn (O; R). Vẽ đường cao AH của tam giác ABC, đường kính AD của đường tròn (O). Gọi E, F lần lượt là chân đường vuông góc kẻ từ C và B xuống đường thẳng AD. M là trung điểm của BC. a) Chứng minh các tứ giác ABHF và BMFO nội tiếp. b) Chứng minh HE//BD. AB AC BC c) Chứng minh S (SABC là diện tích tam giác ABC). ABC 4R Bài 5: (1,0 điểm) Cho các số thực a, b , c 0 thỏa mãn a b c 3. Chứng minh rằng: 3 a2 3 b 2 3 c 2 N = 6 b c c a a b TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 25-
  27. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT BÌNH ĐỊNH NĂM HỌC 2016-2017 Đề chính thức Môn thi: Toán Ngày thi: 19/06/2016 Thời gian làm bài: 120 phút (không kể thời gian phát đề) Bài 1: (2,0 điểm) Không dùng máy tính cầm tay, hãy thực hiện x 6 a) Tính giá trị biểu thức: A khi x 4 x 5 5 2x y 5 b) Giải hệ phương trình y 5 x 10 c) Giải phương trình: x4 5 x 2 36 0 Bài 2: (1,0 điểm) Cho phương trình: x2 (3 m 1) x 2 m 2 m 0 ( m là tham số). Tìm các giá trị m để phương trình có hai nghiệm x1, x 2 phân biệt thỏa mãn x1 x 2 2 . Bài 3: (2,0 điểm) Một phân xưởng cơ khí theo kế hoạch cần phải sản xuất 1100 sản phẩm trong một số ngày quy định. Do mỗi ngày phân xưởng đó sản xuất vượt mức 5 sản phẩm nên đã hoàn thành sớm hơn thời gian quy định 2 ngày. Tìm số sản phẩm theo kế hoạch mà mỗi ngày phân xưởng này phải sản xuất. Bài 4: (4,0 điểm) Cho đường tròn tâm O, dây cung AB cố định (AB không phải là đường kính của đường tròn). Từ điểm M di động trên cung nhỏ AB (M A và M B), kẻ dây cung MN vuông góc với AB tại H. Từ M kẻ đường vuông góc với NA cắt đường thẳng NA tại Q. a) Chứng minh bốn điểm A, M, H, Q nằm trên một đường tròn. Từ đó suy ra MN là tia phân giác của góc BMQ. b) Từ M kẻ đường thẳng vuông góc với NB cắt NB tại P. Chứng minh AMQ PMB c) Chứng minh ba điểm P, H, Q thẳng hàng. d) Xác định vị trí của M trên cung AB để MQ.AN + MP.BN có giá trị lớn nhất. 3x2 Bài 5: (1,0 điểm) Cho x, y , z là các số thực thỏa mãn điều kiện y2 z 2 yz 1. Tìm giá trị 2 lớn nhất và giá trị nhỏ nhất của biểu thức B x y z . TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 26-
  28. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT BÌNH ĐỊNH NĂM HỌC 2017-2018 Đề chính thức Môn thi: Toán Ngày thi: 14/06/2017 Thời gian làm bài: 120 phút (không kể thời gian phát đề) x 2 4 x Câu 1: (1,5 điểm ) Cho A ; B . x 2 x 2 x 4 a) Tính A khi x 9 . b) Thu gọn TAB – . c) Tìm x để T nguyên. Câu 2: (1,5 điểm) Cho phương trình x2 – 2 mx – 6 m – 9 0 . a) Giải phương trình khi m 0. 2 2 b) Tìm m để phương trình có 2 nghiệm x1, x 2 trái dấu thỏa mãn x1 x 2 13 . Câu 3: (2,0 điểm) Một đám đất hình chữ nhật có chu vi 24 m. Nếu tăng độ dài một cạnh lên 2 m và giảm độ dài cạnh còn lại 1 m thì diện tích mảnh đất tăng thêm 1 m2. Tìm độ dài các cạnh của hình chữ nhật ban đầu. Câu 4: (4,0 điểm) Cho tam giác ABC AB AC nội tiếp đường tròn tâm O . M là điểm nằm trên cung BC không chứa điểm A . Gọi D , E , F lần lượt là hình chiếu của M trên BC , CA , AB .Chứng minh rằng: a) Bốn điểm M , B , D , F cùng thuộc một đường tròn và bốn điểm M , D , E , C cùng thuộc một đường tròn. b) Chứng minh D , E , F thẳng hàng. BC AC AB c) . MD ME MF a5 b 5 c 5 Câu 5: (1,0 điểm) Cho a , b , c là ba số thực dương. CMR: a3 b 3 c 3 . bc ca ab TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 27-
  29. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT BÌNH ĐỊNH NĂM HỌC 2018-2019 Đề chính thức Môn thi: Toán Ngày thi: 13/06/2018 Thời gian làm bài: 120 phút (không kể thời gian phát đề) 1 1 x Bài 1: (2,0 điểm) Cho biểu thức A : ( x 0) x x x 1 x 2 x 1 a) Rút gọn biểu thức A 1 b) Tìm các giá trị của x để A 2 Bài 2: (2,0 điểm) 2x y 4 1) Không dùng máy tính, giải hệ phương trình x 3 y 5 2) Trong mặt phẳng tọa độ Oxy đường thẳng d có hệ số góc k đi qua điểm M 1; 3 cắt các trục tọa độ Ox, Oy lần lượt tại A và B a) Xác định tọa độ các điểm AB, theo k b)Tính diện tích tam giác OAB khi k 2 Bài 3: (2,0 điểm) Tìm một số có hai chữ số biết rằng: Hiệu của số ban đầu với số đảo ngược của nó bằng 18 (số đảo ngược của một số là một số thu được bằng cách viêt các chữ số của nó theo thứ tự ngược lại) và tổng của số ban đầu với bình phương số đảo ngược của nó bằng 618. Bài 4: (3,0 điểm) Cho tam giác đều ABC có đường cao AH . Trên cạnh BC lấy điểm M tùy ý (M không trùng với BCH,,) . Gọi PQ, lần lượt là hình chiếu vuông góc của M lên AB, AC . a) Chứng minh tứ giác APMQ nội tiếp được đường tròn và xác định tâm O của đường tròn này b) Chứng minh OH PQ c) Chứng minh MP MQ AH Bài 5: (1,0 điểm) Cho tam giác đều ABC có cạnh bằng a . Hai điểm MN, lần lượt di động trên AM AN hai đoạn thẳng AB, AC sao cho 1. Đặt AM x; AN y . Chứng minh MN a–– x y . MB NC TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 28-
  30. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 SỞ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TUYỂN SINH VÀO 10 THPT BÌNH ĐỊNH NĂM HỌC 2019-2020 Đề chính thức Môn thi: Toán Ngày thi: 06/06/2019 Thời gian làm bài: 120 phút (không kể thời gian phát đề) Bài 1. (2,0 điểm) 1. Giải phương trình: 3(x 1) 5 x 2 . 2. Cho biểu thức: A x 2 x 1 x 2 x 1 với x 1 a) Tính giá trị biểu thức A khi x 5. b) Rút gọn biểu thức A khi 1 x 2. Bài 2. (2,0 điểm) 1. Cho phương trình: x2 ( m 1) x m 0. Tìm m để phương trình trên có một nghiệm bằng 2 . Tính nghiệm còn lại. 2. Trong mặt phẳng tọa độ Oxy cho ba đường thẳng d1::y 2 x 1; d 2y x ; d 3 : y 3 x 2. Tìm hàm số có đồ thị là đường thẳng d song song với đường thẳng d3 đồng thời đi qua giao điểm của hai đường thẳng d1 và d2 . 2 Bài 3. (1,5 điểm) Hai đội công nhân cùng làm chung trong 4 giờ thì hoàn thành được công 3 việc. Nếu làm riêng thì thời gian hoàn thành công việc đội thứ hai ít hơn đội thứ nhất là 5 giờ. Hỏi nếu làm riêng thì thời gian hoàn thành công việc của mỗi đội là bao nhiêu? Bài 4. (3,5 điểm) Cho đường tròn tâm O , bán kính R và một đường thẳng d không cắt đường tròn ()O . Dựng đường thẳng OH vuông góc với đường thẳng d tại điểm H . Trên đường thẳng d lấy điểm K (khác điểm H ), qua K vẽ hai tiếp tuyến KA và KB với đường tròn ()O , ( A và B là các tiếp điểm) sao cho A và H nằm về hai phía của đường thẳng OK . a) Chứng minh tứ giác KAOH nội tiếp được trong đường tròn. b) Đường thẳng AB cắt đường thẳng OH tại điểm I . Chứng minh rằng IA IB IH  IO và I là điểm cố định khi điểm K chạy trên đường thẳng d cố định. c) Khi OK 2 R , OH R 3 . Tính diện tích tam giác KAI theo R . x y Bài 5. (1,0 điểm) Cho x, y là hai số thực thỏa . Tìm giá trị nhỏ nhất của biểu thức xy 1 x2 y 2 P . x y TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 29-
  31. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 LỜI GIẢI ĐỀ TUYỂN SINH VÀO 10 TỈNH BÌNH ĐỊNH - NĂM HỌC 2017-2018 x 2 4 x Câu 1: Cho A ; B . x 2 x 2 x 4 a) Tính A khi x 9 . b) Thu gọn TAB – . c) Tìm x để T nguyên. Lời giải 9 a) Khi x 9 : ta được A 3. 9 2 Điều kiện : x 0 , x 4 x 2 4 x x x 2 2. x 2 4 x TAB x 2 x 2 x 4 x 2 x 2 2 x 2 x 2 x 4 4 x x 4 x 4 x 2 x 2 . x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 4 4 b) T 1 . x 2 x 2 x 2 T nguyên khi 4 (x 2) x 2 1; 2; 4 x 2 1 (loại) hoặc x 2 1 (loại) hoặc x 2 2 hoặc x 2 2 (loại) hoặc x 2 4 hoặc x 2 4 (loại) x 0 hoặc x 4 (loại). Vậy x 0 . Câu 2:(1,5 điểm) Cho phương trình x2 – 2 mx – 6 m – 9 0 a) Giải phương trình khi m 0. 2 2 b) Tìm m để phương trình có 2 nghiệm x1, x 2 trái dấu thỏa mãn x1 x 2 13 . Lời giải a) Khi m 0 phương trình trở thành: x2 9 0 x 3. b) Với a 1, b 2 m , b’ m , c 6 m – 9 . b'2 ac m 2 6 m 9 ( m 3) 2 0,  m . Phương trình luôn có 2 nghiệm x1, x 2 với mọi m . x1 x 2 2 m Theo hệ thức Viet ta có: x1. x 2 6 m 9 TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 31-
  32. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 3 Phương trình có 2 nghiệm trái dấu x x 0 6 m 9 0 m . 1 2 2 2 2 2 2 Ta có : x1 x 2 13 x1 x 2 2 x 1 x 2 13 (2m ) 2( 6 m 9) 13 0 5 1 1 4m2 12 m 5 0 m (loại) hoặc m (nhận). Vậy m . 2 2 2 Câu 3: (2 điểm) Một đám đất hình chữ nhật có chu vi 24 m. Nếu tăng độ dài một cạnh lên 2 m và giảm độ dài cạnh còn lại 1 m thì diện tích mảnh đất tăng thêm 1 m2. Tìm độ dài các cạnh của hình chữ nhật ban đầu. Lời giải Gọi x (m) là cạnh thứ nhất của mảnh đất hình chữ nhật. y (m) là cạnh thứ hai của mảnh đất hình chữ nhật. Điều kiện: 0 x 12 , 1 y 12 . Diện tích mảnh đất ban đầu: x. y (m2). Theo đề ta có phương trình: 2 x y 24 (m). (1) Giả sử tăng độ dài một cạnh lên 2 m và giảm độ dài cạnh còn lại 1 m. Độ dài cạnh thứ nhất khi tăng 2 m: x 2 (m). Độ dài cạnh còn lại khi giảm 1 m: y 1 (m). Diện tích mảnh đất khi thay đổi: (x 2)( y 1) (m2). Theo đề ta có phương trình: (x 2)( y 1) xy 1. (2) Từ (1) , (2) ta có hệ phương trình: 2 x y 24 x y 12 x 7 (x 2)( y 1) xy 1 x 2 y 3 y 5 Vậy kích thước mảnh đất lúc đầu là: 7 m; 5 m. Câu 4:( 4,0 điểm) Cho tam giác ABC AB AC nội tiếp đường tròn tâm O . M là điểm nằm trên cung BC không chứa điểm A .Gọi D , E , F lần lượt là hình chiếu của M trên BC , CA , AB .Chứng minh rằng: a) Bốn điểm M , B , D , F cùng thuộc một đường tròn và bốn điểm M , D , E , C cùng thuộc một đường tròn. b) Chứng minh D , E , F thẳng hàng. BC AC AB c) . MD ME MF TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 32-
  33. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 Lời giải A O E D B C F M a) Bốn điểm M , B , D , F cùng thuộc một đường tròn và bốn điểm M , D , E , C cùng thuộc một đường tròn. Ta có: MF AB nên MFB 90  . MD BC nên MDB 90 . Tứ giác MDBF có MFB MDB 90  90  180  Do đó tứ giác MDBF nột tiếp. Suy ra 4 điểm M , B , D , F cùng thuộc một đường tròn. Ta có : MD BC nên MDC 90  ; MF AC nên MFC 90 . Suy ra: MDC MFC 90  . Mà 2 đỉnh D , F cùng nhìn MC dưới 1 góc bằng nhau. Do đó tứ giác MDEC nột tiếp. Vậy 4 điểm M , D , E , C cùng thuộc một đường tròn. b) Chứng minh D , E , F thẳng hàng.   Vì tứ giác MDBF nội tiếp. Nên: MD1 1 (cùng chắn BF ).   Vì tứ giác MDEC nội tiếp nên MD2 2 . Mặt khác tứ giác MBAC nội tiếp.   Nên BC1 (góc ngoài của tứ giác nội tiếp).       Do đó MM1 2 (cùng phụ với BC1; ). Suy ra: DD1 2 .   Mà D2 BDE 180  . Nên D1 BDE 180 . Vậy, D , E , F thẳng hàng. BC AC AB c) MD ME MF TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 33-
  34. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 Ta có : AC AB AE EC AF FC AE EC AF FC ME MF ME MF ME ME MF MF     tanAME tan M2 tan AMF tan M 1 . Mà MM1 2 AC AB Nên tan AME tan AMF . Mặt khác: tứ giác AFME nội tiếp nên: ME MF AME AFE BMD . AMF AEF DMC AC AB BD DC BD DC BC Do đó: tan AME tan AMF tanBMD tan MDC . ME MF MD MD MD MD a5 b 5 c 5 Câu 5: (1 điểm) Cho a , b , c là ba số thực dương. CMR: a3 b 3 c 3 bc ca ab Lời giải a555 b c a 6 b 6 c 6()()() a 32 b 32 b 32 Ta có: bc ca ab abc abc abc abc abc abc Áp dụng bất đẳng thức Cauchy – Schwarz : abca555( 32 ) ( b 32 ) ( b 32 ) ( abc 3332 ) ( abcabc 333333 )( ) bc ca ab abc abc abc abc abc abc3 abc Áp dụng bất đẳng thức AM – GM cho 3 số a3 ,b3 , c3 ta được: a3 b 3 c 3 33 a 3 b 3 c 3 3 abc a555 b c( a 333333 b c )( a b c ) ( a 333 b c )3 abc Do đó a3 b 3 c 3 (đpcm) bc ca ab3 abc 3 abc Dấu “” xảy ra khi a b c . TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 34-
  35. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 ĐÁP ÁN ĐỀ THI TUYỂN SINH VÀO 10 THPT - NĂM HỌC 2018-2019 1 1 x Bài 1: Cho biểu thức A : ( x 0) x x x 1 x 2 x 1 a) Rút gọn biểu thức A 1 b) Tìm các giá trị của x để A 2 Lời giải 2 1 1 x 1 x x 1 1 x 1 x 1 x a) Ta có A : . x x x 1 x 2 x 1 x. x 1 x x. x x 1 1 x 1 1 x 1 2 2 x x 2 3x b) A 0 0 0 2x 2 x 2 2 x 2x 2 2 1 mà x 0 2 3 x 0 x . Vậy 0 x thì A 3 3 2 Bài 2: 2x y 4 1) Không dùng máy tính, giải hệ phương trình x 3 y 5 2) Trong mặt phẳng tọa độ Oxy đường thẳng d có hệ số góc k đi qua điểm M 1; 3 cắt các trục tọa độ Ox, Oy lần lượt tại A và B a) Xác định tọa độ các điểm AB, theo k b)Tính diện tích tam giác OAB khi k 2 Lời giải 2x y 4 2 x y 4 7 y 14 x 5 3.( 2) x 1 1) Ta có x 3 y 5 2 x 6 y 10 x 5 3 y y 2 y 2 Vậy hệ phương trình có nghiệm duy nhất (x ; y ) (1; 2) 2) a) Đường thẳng d có hệ số góc k nên phương trình d có dạng y kx b Vì d đi qua M (1; 3) nên 3 1.k b b 3 k . Phương trình đường thẳng là y kx 3 k 3 k k 3 Ta có A Ox A( x ;0) , vì A d 0 kx 3 k x A ;0 k k Ta có B Oy B(0; y ) , vì B d y k.0 3 k y 3 k B 0; 3 k 2 k 3 k 3 k 3 b) Ta có ABC vuông tại A , mà A ;0 OA ; k k k 2 3 . 2 3 2 OAOB. 25 B(0; 3 k ) OB 3 k k 3 . Khi k 2 S 2 OAB 2 2 4 25 Vậy S OAB 4 TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 35-
  36. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 Bài 3: Tìm một số có hai chữ số biết rằng: Hiệu của số ban đầu với số đảo ngược của nó bằng 18 (số đảo ngược của một số là một số thu được bằng cách viêt các chữ số của nó theo thứ tự ngược lại) và tổng của số ban đầu với bình phương số đảo ngược của nó bằng 618. Lời giải Gọi số có hai chữ số cần thìm là ab a *;0 a 9;0 b 9 , số đảo ngược là ba Vì hiệu của số ban đầu với số đảo ngược của nó bằng 18 nên ab ba18 10 a b 10 b a 18 9 a 9 b 18 a b 2 a b 2(1) Vì tổng của số ban đầu với bình phương số đảo ngược của nó bằng 618 nên 2 ab ba 618 10 a b (10 b a )2 618 10a b 100 b2 20 ab a 2 618(2) Thay (1) vào (2) ta được 10(b 2) b 100 b2 20(2 b ). b (2 b ) 2 618 2010 b b 100 b2 40 b 20 b 2 44 b b 2 618 121b2 55 b 594 0 b 2 27 . Với b 2 a 4 . Vậy số cần tìm là 42 . b () loai 11 Bài 4. Cho tam giác đều ABC có đường cao AH . Trên cạnh BC lấy điểm M tùy ý ( M không trùng với BCH,, ). Gọi PQ, lần lượt là hình chiếu vuông góc của M lên AB, AC a) Chứng minh tứ giác APMQ nội tiếp được đường tròn và xác định tâm O của đường tròn này b) Chứng minh OH PQ c) Chứng minh MP MQ AH Lời giải A O P Q B H M C a) Xét tứ giác APMQ có APM AQM 900 ( gt ) APM AQM 1800 Tứ giác APMQ nội tiếp trong đường tròn đường kính AM . Gọi O là trung điểm AM Tứ giác APMQ nội tiếp trong đường tròn tâm O đường kính AM . 1 b) Ta có AHM 900 ( gt ) AHM nội tiếp chắn đường tròn đường kính AM 2 TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 36-
  37. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 Suy ra H thuộc trường tròn tâm O . Ta có HPQ HAC (hai góc nội tiếp cúng chắn cung HQ ), HQP HAB (hai góc nội tiếp cúng chắn cung HP ) Mà HAC HAB ( ABC cân có AH vừa là đường cao vừa là đường phân giác) HPQ HQP HPQ cân tại H HP HQ(1) Mà OP OQ( do P , Q (O))(2) . Từ (1) và (2) suy ra OH là đường trung trực của PQ OH  PQ 1 1 c) Ta có S MP () AB MP BC do AB AC MAB 2 2 1 1 S () MQ AC MQ BC do AC BC MAC 2 2 1 S AH. BC ABC 2 1 1 1 Mà S S S MP () BC MQ BC AH BC MP MQ AH dpcm MAB MAC ABC 2 2 2 Bài 5. Cho tam giác đều ABC có cạnh bằng a . Hai điểm MN, lần lượt di động trên hai đoạn AM AN thẳng AB, AC sao cho 1. Đặt AM x; AN y . Chứng minh MN a–– x y MB NC Lời giải A N' N M M' B C AM AN AM AN Ta có 1 1 MB NC AB AM AC AN x y 1 ax xy ay xy a2 ax ay xy a x a y a2 2 ax 2 ay 3 xy 0 a2 x 2 y 2 2 ax 2 by 2 xy x 2 y 2 xy a x y 2 x2 y 2 xy Giả sử x y, kẻ MM //;//,; BC NN BC M AC N AB AM AM Áp dụng định lý Talet ; AB AC AM AM AB AC BAC 600 MAM 60 0 AMM đều MM AM x Chứng minh tương tự ta có NN y , MM / / NN ; AMM AM M 600 MM NN là hình thang cân. TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 37-
  38. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 Ta có MN M N x- y x y x y Kẻ NH MM ta có M H ; MH 2 2 2 2 x y x y 3 Áp dụng đinh lý Pitago vào NHM có NH NM '2 M ' H 2 x y 4 2 Áp dụng đinh lý Pitago vào NHM vuông tại H ta có 2 3(x y )2 x y 4 x 2 4 y 2 4 xy MN NH2 MH 2 x 2 y 2 xy 4 4 4 a x y 2 a x y AM AN AM 1 Ta có 1 1 AM AB AM AM AM MB AB a AM a MB NC MB 2 1 1 1 Chứng minh tương tự ta cũng được AN aaxya a a 0 axyaxy 2 2 2 Vậy MN a x y TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 38-
  39. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 ĐÁP ÁN ĐỀ THI TUYỂN SINH VÀO 10 THPT - NĂM HỌC 2019-2020 Bài 1. 1. Giải phương trình: 3(x 1) 5 x 2 . 2. Cho biểu thức: A x 2 x 1 x 2 x 1 với x 1 a) Tính giá trị biểu thức A khi x 5. b) Rút gọn biểu thức A khi 1 x 2. Lời giải 5 1. Ta có 3(1)5233522x x x x x 5 x . 2 5 Vậy phương trình đã cho có nghiệm là x . 2 2. a) Khi x 5, ta có A 5 2 5 1 5 2 5 1 524 524   522 522 9 1314. Vậy khi x 5 thì A 4 . b) Với 1 x 2, ta có A x 2 x 1 x 2 x 1 x 1 2 x 1 1 x 1 2 x 1 1 (x 1 1)2 ( x 1 1) 2 |x 1 1| | x 1 1| x 1 1 1 x 1 (1 x 2 0 x 1 1 x 1 1 0) 2. Vậy khi 1 x 2 thì A 2 . Bài 2. 1. Cho phương trình: x2 ( m 1) x m 0. Tìm m để phương trình trên có một nghiệm bằng 2 . Tính nghiệm còn lại. 2. Trong mặt phẳng tọa độ Oxy cho ba đường thẳng d1::y 2 x 1; d 2y x ; d 3 : y 3 x 2. Tìm hàm số có đồ thị là đường thẳng d song song với đường thẳng d3 đồng thời đi qua giao điểm của hai đường thẳng d1 và d2 . Lời giải 1. x2 ( m 1) x m 0. (1) TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 39-
  40. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 Thay x 2 vào phương trình (1) ta được 22 (m  1) 2 m 0 4 2 m 2 m 0 3 m 6 m 2. Thay m 2 vào phương trình (1) ta được x2 x 2 0. Ta có các hệ số: a b c 0 nên phương trình có hai nghiệm phân biệt là x1 1; x 2 2 . Vậy với m 2 phương trình đã cho có một nghiệm bằng 2 , nghiệm còn lại là 1. 2. a 3 Phương trình đường thẳng d: ax b ( a , b ) . Ta có d d3 d: y 3 x b , ( b 2). b 2 Tọa độ giao điểm của hai đường thẳng d1, d 2 là nghiệm của hệ phương trình y 2 x 1 x 2 x 1 x 1 A(1;1) . Vì A(1;1) d : y 3 x  b 1 3 1 b b 4 (TM). y x y x y 1 Vậy phương trình đường thẳng cần tìm là d: y 3 x 4 . 2 Bài 3. Hai đội công nhân cùng làm chung trong 4 giờ thì hoàn thành được công việc. Nếu 3 làm riêng thì thời gian hoàn thành công việc đội thứ hai ít hơn đội thứ nhất là 5 giờ. Hỏi nếu làm riêng thì thời gian hoàn thành công việc của mỗi đội là bao nhiêu? Lời giải Gọi thời gian đội thứ nhất làm riêng hoàn thành công việc là x (giờ, x 5). Thời gian đội thứ hai làm riêng hoàn thành công việc là y (giờ, y 0). 1 1 Mỗi giờ đội thứ nhất làm được công việc, đội thứ hai làm được công việc. x y 4 4 Trong 4 giờ đội thứ nhất làm được công việc, đội thứ hai làm được công việc. x y 4 4 2 (1) Theo đề ta có hệ phương trình x y 3 x y 5 (2) 4 4 2 (2) x y 5 thế vào (1) ta được 6y 6( y 5) y ( y 5) y 5 y 3 y 3 (ktm) y2 7 y 30 0 y 10 x 15 Vậy nếu làm riêng thì thời gian hoàn thành công việc của đội thứ nhất là 15 giờ, đội thứ hai là 10 giờ. TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 40-
  41. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 Bài 4. Cho đường tròn tâm O , bán kính R và một đường thẳng d không cắt đường tròn ()O . Dựng đường thẳng OH vuông góc với đường thẳng d tại điểm H . Trên đường thẳng d lấy điểm K (khác điểm H ), qua K vẽ hai tiếp tuyến KA và KB với đường tròn ()O , ( A và B là các tiếp điểm) sao cho A và H nằm về hai phía của đường thẳng OK . a) Chứng minh tứ giác KAOH nội tiếp được trong đường tròn. b) Đường thẳng AB cắt đường thẳng OH tại điểm I . Chứng minh rằng IA IB IH  IO và I là điểm cố định khi điểm K chạy trên đường thẳng d cố định. c) Khi OK 2 R , OH R 3 . Tính diện tích tam giác KAI theo R . Lời giải K H d B I M O A a) Ta có KAO 90 ( KA  AO ) , KHO 90 ( OH  KH ) Xét tứ giác KAOH có KAO KBO 180 nên là tứ giác nội tiếp. b) Ta có KBO KAO 180 nên KAOB là tứ giác nội tiếp và đỉnh HBA,, cùng nhìn cạnh OK dưới một góc vuông nên năm điểm KABOH,,,, cùng thuộc đường tròn đường kính OK Xét tam giác IAH và tam giác IOB có HIA BIO (đối đỉnh) và AHI ABO (hai góc nội tiếp IA IO cùng chắn cung AO ). Do đó IAH∽ IOB ( g . g ) IA  IB IH  IO . IH IB Xét tứ giác AOBH có OHB là góc nội tiếp chắn cung OB, OBA là góc nội tiếp chắn cung OA; Mà OA OB R nên OHB OBA . Xét OIB và OBH có BOH góc chung và OHB OBA (cmt). TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 41-
  42. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 OI OB OB2 R 2 Do đó OIB∽ OBH ( g . g ) OI . OB OH OH OH Ta lại có đường thẳng d cố định nên OH không đổi ( OH d ). Vậy điểm I cố định khi K chạy trên đường thẳng d cố định. c) Gọi M là giao điểm của OK và AB Theo tính chất tiếp tuyến ta có KA=KB; Lại có OA OB R nên OK là đường trung trực của AB, suy ra AB OK tại M và MA MB . RRR2 2 Theo câu b) ta có OI . OH R 3 3 OA2 R 2 R Xét OAK vuông tại A , có OA2 OM  OK OM OK2 R 2 RR3 Suy ra KM OK OM 2 R 2 2 RRRR3 32 3 AM2 OM  KM  AM 2 2 4 2 2 2 2 2 RRR 3 Xét OMI vuông tại M , có MI OI OM 3 2 6 RRR3 3 2 3 Suy ra AI AM MI 2 6 3 1 1 3RRR 2 32 3 Diện tích AKI là S AI  KM   . 2 2 2 3 2 x y x2 y 2 Bài 5. Cho x, y là hai số thực thỏa . Tìm giá trị nhỏ nhất của biểu thức P . xy 1 x y Lời giải x2 y 2( x y ) 2 2 xy 2 Với x y, xy 1, ta có P x y x y x y x y 2 Vì x y x y 0; 0 và xy 1. x y 2 Áp dụng bất đẳng thức Cô-si cho hai số dương x y; , ta có x y 2 2(x y ) x y 2 2 2 2 2 . Suy ra minP 2 2 . x y x y 2 Dấu đẳng thức xảy ra x y ( x y )2 2 x y 2 x y 2 . x y TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 42-
  43. TEAM BÌNH ĐỊNH – Tuyển tập 20 năm đề thi tuyển sinh vào lớp 10 6 2 y 2 2 2 Mà xy 1 ( y 2) y 1 y 2 y 1 y 2 y 1 0 6 2 y 2 2 6 2 6 x x 2 2 Vậy minP 2 2 tại hoặc 2 6 2 6 y y . 2 2 TOÁN HỌC BẮC–TRUNG–NAM sưu tầm và biên tập - Trang | 43-