Đề thi Trung học phổ thông quốc gia môn Toán 12 - Đề số 2 - Trường THPT Thanh Bình
Bạn đang xem tài liệu "Đề thi Trung học phổ thông quốc gia môn Toán 12 - Đề số 2 - Trường THPT Thanh Bình", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_thi_trung_hoc_pho_thong_quoc_gia_mon_toan_12_de_so_2_truo.doc
Nội dung text: Đề thi Trung học phổ thông quốc gia môn Toán 12 - Đề số 2 - Trường THPT Thanh Bình
- SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH ĐỒNG THÁP TRƯỜNG THPT THANH BÌNH 2 ĐỀ ĐỀ XUẤT 02 THPTQG 2017 MÔN TOÁN LỚP 12 Câu 1: Các hàm số sau hàm số nào đồng biến trên miền xác định x x 2 1 A. y log e xB. y C.2 D. y x y 2 Câu 2: Giá trị lớn nhất hàm số f (x) x3 3x2 9x 35 trên đoạn 4;4 là A. 8 B. 33 C. -41 D. 40 Câu 3: Một khu rừng có trữ lượng gỗ 4.105 m3 . Biết tốc độ sinh trưởng của khu rừng đó là 4% trên năm. Hỏi sau năm năm khu rừng đó sẽ có bao nhiêu m 3 gỗ. (Lấy chính xác đến sau hai chữ số thập phân) A. 4,57. 105 m3 B. 4,47. 105 m3 C. 4,87. 105 m3 D. 4,67. 105 m3 Câu 4: Có bao nhiêu số phức z thỏa mãn z3 =1 mà có phần thực âm : A. 0 B. 1 C. 3 D. 2 Câu 5: Tính thể tích V của khối lập phương ABCDA’B’C’D’ biết AC = 2a 8a3 a3 A. V = . B. V = 8a3 C. V = D. V = a3 3 3 Câu 6: Trong không gian Oxyz, phương trình mặt phẳng (P) đi qua điểm M(2; 1; -1) và có vectơ pháp tuyến n 1;1;3 là: A. x y 3z 0. B. x y 3z 6 0. C. x y 3z 6 0. D. 2x y z 0. Câu 7: Tìm tập xác định hàm số y ln 3x 9 A. D 3; . B. .D R C. D R. \ 3 D. D 0.; Câu 8: Diện tích hình phẳng giới hạn bởi hai đường y x2 2 vày 3x 2 là: 56 125 13 A. S= . B. S=42. C. S= . D. S= . 3 6 6 e 1 ln x Câu 9: Cho I= dx .Kết quả nào đúng? 1 x 1 3 A. I=2. B. I= C. I= e D. I= . e 2 Câu 10: Cho số phức z =a bi với a,b R .Hỏi các biểu sau, phát biểu nào đúng? A. a2 b2 là mô đun của .z B. bi là phần ảo. C. z và z có mô đun khác nhau. D. Điểm M( a;b )biểu diễn số phức z trên mặt phẳng Oxy. Câu 11: Cho z1 2 5i ,z2 2 4i . Tìm số phức z =z1.z2 .
- A. z 6 20i B. z 26 7i. C. z 26 7i D. z 6 20i lg 2 25x.22x Câu 12: S=dx . Kết quả nào sau đây là đúng? x 1 10 1 1 8 A. S= B. S= (lg 2 10) C. S= D. S=10 lg 2. ln10 ln10 ln10 Câu 13: Nếu x là một nghiệm dương của phương 22x 3 33.2x 4 0 . Khi đó M x2 3x 7 là 55 26 A. 6. B. C. 29 D. . 27 9 Câu 14: Đồ thị sau đây là của hàm số y x3 3x 1 . Với giá trị thực nào của m thì phương 3 trình x 3x m 0 có ba nghiệm phân biệt. 3 A. 1 m 3. B. 2 m 2 . 2 C. 2 m 3. D. 2 m 2. 1 -1 1 O Câu 15: Cho OM 3i 2 j k . Tọa độ của điểm M là : -1 A. (2;5;-1). B. (-3;-2;1) . C. (-2;-5;1) . D. (-2;5;1) . 1 x 1 1 4 Câu 16: Tập nghiệm của bất phương trình: 2 là: 2 5 5 5 A. 1; B. 1; C. ;1 ; D. 1; . 4 4 4 Câu 17: Cho 4x 4 x 3 . Tính A 2x 2 x A. 5 B. 2 5 C. 10 D. 5 2 3 3 Câu 18: Giả sử f (x)dx =2, f (x)dx =5, g(x)dx =7. Mệnh đề nào sau đây là đúng? 0 2 0 A. >,f (x) g (x) x [0;3] B. <,f (x) g(x) x [0;3] C. =,f (x) g (x) x [0;3]. D. =,f (x) g(x) x [2;3] 4 Câu 19: Cho J= xdx .Ta có: 1 14 5 A. J=1. B. J=. C. J=7. D. J=. 3 3 1 Câu 20: H= | x m | dx ,với m 0 .Ta có: 0 1 1 A. H= m B. H= 2 m C. H= m D. H= m 2 2 Câu 21: Cho C là một hằng số tùy ý,F(x) là một nguyên hàm của f (x) ,ta có: A. =( f (x)dx)' f '(x) B. = +C ( f (x)dx)' F(x)
- C. =( f (x)dx)' F(x) D. = ( f (x)dx)' F '(x). Câu 22: Cho một hình trụ có bán kính r 5cm và hai điểm A, B nằm trên hai đường tròn đáy sao cho AB 14 , góc giữa AB và trục bằng 600 . Thể tích V của khối trụ đó là? 245 A. V 35 cm3 . B. V 175 cm3 . C. V 245 cm3 . D. V cm3. 3 Câu 23: Một đoàn tàu chuyển động thẳng khởi hành từ một nhà ga. Quảng đường s(mét) đi được của đoàn tàu là một hàm số của thời gian t(phút), hàm số đó là s = 6t 2 – t3. Thời điểm t( giây) mà tại đó vận tốc v(m/s) của chuyển động đạt giá trị lớn nhất là: A. t = 6s B. t = 2s C. t = 3s D. t = 4s Câu 24: Trong các hàm số sau đây, hàm số nào không có cực trị: A. y x4 x2 1 B. y x4 3 C. .y x3D. 3 x2 3 y x3 2. Câu 25: bằng:xsin xdx 1 A. B. C. 2 D. 2 1. Câu 26: Cho bảng biến thiên của một hàm số f x . Trong các mệnh đề sau mệnh đề nào sai? x 1 0 1 y 0 0 0 ’ y 3 -4 A. Hàm số f x nghịch biến trên mỗi khoảng ; 1 và 0;1 B. Hàm số f x nghịch biến trên mỗi khoảng 1;0 và 1; C. Hàm số f x đồng biến trên mỗi khoảng 1;0 và 1; D. Hàm số f x là hàm số bậc bốn. 7x 6 Câu 27: Gọi M và N là giao điểm của đồ thị y và đường thẳng y = x + 2 . Khi đó x 2 hoành độ trung điểm I của đoạn MN bằng 7 7 11 A. B. C. 7 D. 2 2 2 Câu 28: Số phức z có mô đun bằng 17 và phần thực hơn phần ảo 5 đơn vị.Biết cóz phần thực nhỏ hơn 2.Khi đó mô đun của w =2+z có giá trị là: A. 5. B. 7. C. 4. D. 15 . ln x2 4x Câu 29: Nghiệm phương trình e 8x 5 là: A. 1 và 5 B. 1 và 5 C. 1 D. 5
- 4i Câu 30: Xét các điểm A,B,C trong mặt phẳng phức theo thứ tự biểu diễn các số , i 1 2 6i (1 i).(1 2i) , .Khi đó số phức biểu diễn D sao cho ABCD là hình vuông là: 3 i A. 1 i B. 1 i C. 1 i D. 1 i. Câu 31: Cho số phức z =2 4i .Tìm phần thực ,phần ảo của số phức w z i . A. Phần thưc bằng -2,phần ảo bằng 3i B. Phần thưc bằng -2,phần ảo bằng 3. C. Phần thưc bằng 2,phần ảo bằng 3i. D. Phần thưc bằng 2,phần ảo bằng 3. 2x 1 Câu 32: Tiệm cận đứng của đồ thị hàm số y là x 1 A. x 1 B. y 2 C. x 2 D. y 1 Câu 33: Trong các hình dưới đây hình nào là khối đa diện A. B. C. D. Câu 34: Cho hình chóp S.ABCD có SA vuông góc với mặt phẳng đáy. ABCD là hình chữ nhật có cạnh AB a; BC 3a , SC hợp với đáy một góc 45 .0 Tính thể tích V của khối cầu ngoại tiếp hình chóp. 8 a3 8 2 a3 2 a3 4 a3 A. V B. V C. V D. V . 3 3 3 3 Câu 35: Trong các hàm số sau , hàm số nào sau đây đồng biến trên khoảng (1 ; 3) ? x 3 4x 3 A. y x2 4x 5. B. y C. y 2x2 x4. D. y . x 1 x 2 Câu 36: Cho hình chóp S.ABC có SA vuông góc mặt đáy, SA 5a , ABC vuông tại A, SM 1 SN 3 AB 3a; AC 4a. Gọi M, N trên SB và SC sao cho ; . Tính thể tích V của khối SB 2 SC 4 tứ diện SAMN. 15 15a3 A. V a3 . B. V 5a3 C. V 4a3 D. V 4 2 Câu 37: Trong không gian với hệ tọa độ Oxyz, cho 2 đường thẳng x 3t x y 1 z 2 d1 : ;d2 : y 1 t . Đường thẳng d vuông góc với 2 đường thẳng d1,d2 . Khi đó 2 1 1 z 1 2t vectơ nào sau đây không phải là vectơ chỉ phương của d là: A. u 1;7; 5 . B. u 2; 14; 10 . C. u 1;7;5 . D. u 1; 7; 5 . Câu 38: Cho A(1;2;3), B(2;-2;1), C(-1;-2;-3). Tọa độ của điểm D thỏa ABCD là hình bình hành là : A. (-2;2;-1) B. (2;-2;1) C. (2;2;-1) D. (-2;2;-1)
- Câu 39: Đồ thị sau là của hàm số nào y 3 A. y x3 3x 1. B. y x3 3x2 1. 1 3 3 C. y x 3x 1. D. y x 3x 1. - 1 o 1 x - 1 Câu 40: Cho a m;6; 5 , b m; m; 1 . Tất cả các giá trị thực của m để hai vectơ này vuông góc là: A. m=1 , m=5 B. m=1 C. m=5 D. m=-2 , m=-3 Câu 41: Cho f (x) là một nguyên hàm của g(x) và g(x) là một nguyên hàm của f (x) .Có bao nhiêu cặp f (x) và g(x) như thế? A. 1 B. 3 C. Vô số D. 2 Câu 42: Trong không gian với hệ tọa độ Oxyz, phương trình tham số của đường thẳng đi qua M(1; 2; -3) và có vectơ chỉ phương u 3; 4;1 là x 1 3t x 3 t x 1 3t x 3 t A. y 2 4t . B. y 4 2t. C. y 2 4tD. y 4 2t z 3 t z 1 3t z 3 t z 1 3t Câu 43: Cắt mặt xung quanh của một hình nón tròn xoay dọc theo một đường sinh rồi trải ra trên một mặt phẳng ta được một nửa hình tròn bán kính 10 (cm). Hỏi hình nón đó có bán kính r của đường tròn đáy bằng bao nhiêu? A. r 5 (cm) B. r 10 (cm) C. r 15 (cm) D. r 20 (cm) x 1 y 1 z 2 Câu 44: Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : và mặt 1 2 3 phẳng P : x y z 4 0 . Trong các mệnh đề sau, tìm mệnh đề đúng: A. d P B. d cắt (P) C. d (P) D. d / /(P) Câu 45: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P : 2y z 0 . Tìm mệnh đề đúng trong các mệnh đề sau: A. P Ox B. (PC.) / / O y D. (P) / /(yOz) P / /Ox. Câu 46: Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(1;2;2), B(5;4;4) và mặt phẳng (P): 2x + y – z + 6 =0. Tọa độ điểm M nằm trên (P) sao cho MA2 + MB2 nhỏ nhất là: A. M(1;-1;3) B. M(2;1;-5) C. M(-1;1;5) D. M(-1;3;2) 3 2 Câu 47: Cho hàm số y x 3x 9x 4 . Nếu hàm số đạt cực đại tại x1 và cực tiểu tại x2 thì tích của hai giá trị cực đại và cực tiểu bằng : A. -14 B. -3 C. -207 D. 3 Câu 48: Cho J= sin(2x 3)dx ,ta có:
- 1 A. cos(2x 3) C. B. cos(2x 3) C. 2 1 C. J= 2cos(2x 3) C. D. J=cos(2x 3) C . 2 Câu 49: Cho hình chóp S.ABC có thể tích bằng 20a3 . Gọi M, N lần lượt là trung điểm của cạnh BC, SB. Tính thể tích V của khối tứ diện BAMN. 20a3 20a3 A. V 5a3 B. V C. V 4a3. D. V . 3 6 Câu 50: Mặt phẳng (P) 2x-2y-z +9 =0 cắt mặt cầu S :x2 y2 z2 6x 4y 2z 86 0 Theo giao tuyến là một đường tròn tâm I có tọa độ là : A. (3;-2;1). B. (-1;2;3). C. (1;-2;-3). D. (-1;2;-3). HẾT PHIẾU ĐÁP ÁN TRẮC NGHIỆM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 A B C D 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 A B C D 41 42 43 44 45 46 47 48 49 50 A B C D HƯỚNG DẪN GIẢI CHI TIẾT Câu 1: Chọn B MTCT Câu 2: Chọn D
- lim f x , lim f x x 1 x 1 TC đứng x 1 Câu 3: Chọn C Vì y ' 3x2 và y ' 0 có nghiệm kép Câu 4: Chọn D 2 Vì y ' 0 suy ra hàm số đã cho đồng biến trên mỗi khoảng ;1 , 1; x 1 2 Vậy hàm số đồng biến trên khoảng (1 ; 3) Câu 5: Chọn D 2 x 1 y 3 Vì hàm số có y ' 3x 3 y ' 0 x 1 y 1 1;3 là điểm cực đại của đồ thị Câu 6: Chọn A 3 3 Pt x 3x m 0 là pt hoành độ giao điểm của y x 3x 1 và y m 1 1 m 1 3 2 m 2 Câu 7: Chọn C s = 6t2 – t3 2 t 4 s ' 12t 3t s ' 0 t 0 Lập bảng biến thiên suy ra vận tốc v(m/s) của chuyển động đạt giá trị lớn nhất khi t = 4s Câu 8: Chọn C Dựa vào bảng biến thiên Câu 9: Chọn D 7 89 x1 7x 6 2 2 Pthdgđ x 2 x 7x 10 0 x 2 7 89 x2 2 x x 7 1 2 2 2 Câu 10: Chọn D y ' 3x2 6x 9 x 1 y 9 y ' 0 x 3 y 23 Lập bảng biến thiên suy ra yCT 23 , yCĐ=9 nên yct.yCĐ= -207 Câu 11: Chọn C 3x 9 0 x 3
- Câu 12: Chọn C Vì 2 > 1 nên yđồng 2x biến Câu 13: Chọn A ĐK: x2 4x 0 x 4 x 0 x 1 l Pt x2 4x 8x 5 x 5 n Câu 14: Chọn B 2x 4 x 2 x x 2 pt 8.(2 ) 33.2 4 0 1 2x x 3 8 M 22 32 7 6 Câu 15: Chọn B 2 A2 2x 2 x 3 2 5 A 5 Câu 16: Chọn B 5 5 4 5 T 4.10 1 4,87.10 100 Câu 17: Chọn D 1 5 4 1 x x 1 4 Câu 18: Chọn C Vì theo tính chất nguyên hàm,ta có:( f (x)dx)' = f (x) Mặt khác f (x) =F '(x) nên=( f (x)dx)' F '(x) Câu 19: Chọn B 1 1 Ta có J=sin(2x 3)dx =sin(2x 3)d(2x 3) = cos(2x 3) C 2 2 Câu 20: Chọn D Vì nhận thấy hàm số e x và -e x là nguyên hàm của nhau.Từ đó ta cók e x và - k e x cũng là nguyên hàm của nhau Câu 21: Chọn D 4 2 3 2 3 14 Vì J=xdx =x 2 |4 =(42 1) = 1 1 3 3 3 Câu 22: Chọn B e 1 ln x e (1 ln x)2 (1 ln e)2 (1 ln1)2 3 Vì I=dx =(1 ln x)d(1 ln x) =|e = = 1 1 x 1 2 2 2 2 Câu 23: Chọn D
- 3 2 3 3 Ta có: f (x)dx f (x)dx f (x)dx =2+5=7= g(x)dx 0 0 2 0 Câu 24: Chọn D Với m 0 ta có x m 0,x [0;1] 1 1 x2 1 Nên H=| x m | dx =(x m)dx =( mx) |1 = m 0 0 0 2 2 Câu 25: Chọn B lg 2 25x.22x lg 2 10x 8 Ta có S=dx =10x dx =|lg 2 = x 1 1 10 1 ln10 ln10 Câu 26: Chọn B u x dv dx dv sin xdx v cos x xsin xdx = xsin x | cos xdx = xsin x | sin x | 0 0 0 1 0 Câu 27: Chọn D 2 x 1 f (x) g(x) 0 x 3x 4 0 x 4 4 4 125 S= | x2 3x 4 | dx =| x2 3x 4dx | = 1 1 6 Câu 28: Chọn A z 1 3 3 2 1 3 Vì z 1 z 1 0 (z 1)(z z 1) 0 1 3 z i (phần thực âm) z i 2 2 2 2 Câu 29: Chọn D | z | a2 b2 a 1 a 4 z a bi ,,a,b R a 2 hoặc (loại) z 1 4i w 3 4i a b 5 b 4 b 1 | w | 5 Câu 30: Chọn A Vì z a bi có b là phần ảo A sai,z a bi | z | | z | B,D sai Câu 31: Chọn D 4i =2 2i A(2;-2) i 1 (1 i).(1 2i) =3+i B(3;1) 2 6i =2i C(0;2) 3 i AB =(1;3),D(x;y),DC =(-x;2-y)
- x 1 ABCD hình vuông AB = DC .Số phức biểu diễn điểm D(-1;-1) là -1-i y 1 Câu 32: Chọn A w z i 2 3i Câu 33: Chọn C Sử dụng MTCT Câu 36: Diện tích đáy bằng một nữa, chiều cao bằng một nữa, thể tích bằng một phần tư thể tích khối chóp lớn. 3 VSAMN 3 Câu 37: VSABC 10a ; VSABC 8 Câu 38: Chu vi nữa hình tròn là:10 Chu vi hình tròn đáy của hình nón là: 2 r r 5 Câu 39: Gọi A’ là hình chiếu của A lên hình tròn còn lại, khi đó AA’ song song với trục, ¼A' AB 600 AA' 7 V 175 8 2 a3 Câu 40: AC 2a;SA 2a;SC 2 2a r 2a V 3 Câu 44: Tâm mặt cầu O(3; 2;1) . Tâm đường tròn giao tuyến I là hình chiếu của O lên (P). Câu 47: Gọi I là trung điểm AB, M chính là hình chiếu của I lên (P). TRƯỜNG: THPT
- MA TRẬN ĐỀ ÔN THI THPT QUỐC GIA MÔN TOÁN LỚP 12 NĂM HỌC 2016 – 2017 Chủ đề Mức độ nhận thức Tổng số câu Nhận Thông Vận Vận dụng biết hiểu dụng cao thấp Ứng dụng của đạo hàm để khảo sát và vẽ 4 3 2 1 10 đồ thị hàm số Hàm số lũy thừa, hàm số mũ, hàm số 3 2 1 1 7 lôgarit Nguyên hàm, tích phân và ứng dụng 4 3 2 1 10 Số phức 3 2 1 6 Khối đa diện 1 1 1 1 4 Mặt nón, mặt trụ, mặt cầu 1 1 1 3 Phương pháp tọa độ trong không gian 4 3 2 1 10 Tổng cộng 20 15 10 5 50 Điểm 4 3 2 1 10.0