Đề cương Ôn tập môn Toán Lớp 8 - Học kì 2 - Năm học 2020-2021
Bạn đang xem tài liệu "Đề cương Ôn tập môn Toán Lớp 8 - Học kì 2 - Năm học 2020-2021", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_cuong_on_tap_mon_toan_lop_8_hoc_ki_2_nam_hoc_2020_2021.pdf
Nội dung text: Đề cương Ôn tập môn Toán Lớp 8 - Học kì 2 - Năm học 2020-2021
- HƯỚNG DẪN ÔN TẬP HỌC KÌ II NĂM HỌC 2020 – 2021 MÔN TOÁN – LỚP 8 I. KIẾN THỨC TRỌNG TÂM Chủ đề Nội dung Phương trình - Phương trình tương đương - Định nghĩa phương trình bậc nhất một ẩn - Hai quy tắc biến đổi phương trình - Cách giải phương trình bậc nhất một ẩn, phương trình đưa được về dạng bậc nhất một ẩn, phương trình tích, phương trình chứa ẩn ở mẫu - Cách giải phương trình chứa dấu giá trị tuyệt đối Bất phương trình - Tập nghiệm của bất phương trình - Bất phương trình tương đương - Định nghĩa bất phương trình bậc nhất một ẩn - Hai quy tắc biến đổi bất phương trình - Cách giải bất phương trình bậc nhất một ẩn, bất phương trình đưa được về dạng bậc nhất một ẩn Giải bài toán bằng cách lập - Các bước giải bài toán bằng cách lập phương trình phương trình - Các dạng toán giải bằng cách lập phương trình: chuyển động, năng suất, số và chữ số, phần trăm, hình học. Bất đẳng thức - Mối liên hệ giữa thứ tự và phép tính (phép cộng, phép nhân) - Chứng minh bất đẳng thức - Tìm giá trị lớn nhất, giá trị nhỏ nhất Định lí Ta-let - Định lí Ta-lét, định lí đảo và hệ quả của định lí Ta-lét Tính chất đường phân giác - Tính chất đường phân giác của tam giác Tam giác đồng dạng - Khái niệm hai tam giác đồng dạng - Các trường hợp đồng dạng của tam giác, tam giác vuông Hình học không gian - Khái niệm hình hộp chữ nhật, hình lập phương, hình lăng trụ đứng. - Các công thức tính diện tích xung quanh, diện tích toàn phần, thể tích của hình hộp chữ nhật, hình lập phương, hình lăng trụ đứng. Trang 1
- II. BÀI TẬP MINH HỌA Phần 1. Bài tập trắc nghiệm Câu 1. Nghiệm của phương trình 2x 3 5 là: A. x 4 ; B. x 4 ; C. x 10 ; D. x 1. 2x 1 Câu 2. Tập nghiệm của phương trình 1là: x 2 A. S 2; 3 ; B. S 2; C. S 3 ; D. S 1 . Câu 3. Phương trình nào trong các phương trình sau có điều kiện xác định là x 2 ? x 2 1 2 1 A. 1 0 ; B. 1 0; C. 1 0 ; D. 1 0 . x 2 x 2 x x 2 1 Câu 4. Điều kiện xác định của phương trình 2 0 là: 1 x A. x 1; B. x 1; C. x 1; D. x 1. x 2 . Câu 5. Trong các phương trình sau, phương trình nào là phương trình bậc nhất một ẩn? 1 A. 2x 1 0 ; B. x2 0 ; C. 0x 2 0; D. 2 0 . x Câu 6. Phương trình nào sau đây có nghiệm x 2 ? A. 2x 1 x 1; B. 2x 1 x 3 ; C. 2x 1 x 3; D. 2x 1 x 3 . Câu 7. Phương trình x 6 5x 12 tương đương với phương trình: A. x 5x 6 12; B. x 5x 6 12; C. x 5x 6 12; D. x 5x 6 12 . Câu 8. Tập nghiệm của phương trình x 1 x 2 0là: A. S 2; 1; B. S 1;2 ; C. S 1;2; D. S 2;1 . Câu 9. Tập nghiệm của phương trình x 2x 5 x x 1 là: A. S 0; 1 ; B. S 6 ; C. S 0;6 ; D. S 0 . Câu 10. Nếu x 5 15thì: A. x 10 ; B. x 10 ; C. x 20 ; D. x 20. Câu 11. Với x y, ta có: A. 2x 2y ; B. 3x 3y ; C. 4x 1 4y 1; D. 5x 3 5y 3. Câu 12. Bất phương trình 5(x 1) 4(x 3)có nghiệm là: A. x 7 ; B. x 2 ; C. x 1; D. x 17. BD Câu 13. Cho ABC có AB 6cm, AC 5cm và AD là đường phân giác. Tỉ số bằng: CD 6 6 5 A. 1; B. ; C. ; D. . 11 5 6 Trang 2
- Câu 14. Nếu ABC MNP thì ABC đồng dạng với MNP theo tỉ số đồng dạng bằng: 1 A. 1; B. ; C. 4; D. 2. 2 Câu 15. Cho ∆ABC đồng dạng ∆MNP, góc B bằng 600 thì góc N bằng: A. 1000; B. 700; C. 800; D. 600. Câu 16. Cho ABC đồng dạng với MNP theo tỉ số đồng dạng k = 2. Tỉ số diện tích ABC và MNP bằng: 1 1 A. 4; B. 2; C. ; D. . 4 2 2 Câu 17. Cho tam giác ABC đồng dạng với tam giác A’B’C’ với tỉ số đồng dạng k , biết chu 3 vi tam giác A’B’C’ bằng 60cm thì chu vi tam giác ABC bằng: A. 40cm; B. 90cm; C. 20cm; D. 30cm. Câu 18. Hình lập phương có cạnh 4cm thì thể tích bằng: A. 8cm3; B. 16cm3; C. 64cm3; D. 12cm3. Câu 19. Hình hộp chữ nhật có: A. 6 đỉnh, 8 mặt, 12 cạnh; B. 8 đỉnh, 6 mặt, 12 cạnh; C. 12 đỉnh, 6 mặt, 8 cạnh; D. 6 đỉnh, 12 mặt, 8 cạnh. Câu 20. Cho hình hộp chữ nhật có ba kích thước 2cm, 3cm, 4cm (4cm là chiều cao). Diện tích xung quanh của hình hộp chữ nhật đó bằng: A. 20cm2; B. 40cm2; C. 60cm2; D. 80cm2. Phần 2. Bài tập tự luận Dạng 1. Giải phương trình Bài 1. Giải các phương trình sau: a) 3(x 4) 5 2(x 1) 8; b) 5(x 1)2 2x 5x 2 3; c) (2x 5)(x 4) 3x 12 0 ; d) (2x 1)2 (x 1) 2 0 ; e) x3 2x 2 2 x 0 ; f) x2 10x 25 (x 1)(x 5) ; x x 2 1 2 x g) ; h) ; x 4 x 1 (x 4)(x 1) x 1 x 1 x2 1 3x 1 2x 5 8 x 3 x 8 20 i) 1; k) . x 1 x 3 x2 2x 3 x 1 x 4 x2 3x 4 Bài 2. Giải các phương trình sau: a) 2x 5 x 2; b) 2x 1 2x 1 0 ; c) 1 x 6x 3; d) 4x x2 4 ; Trang 3
- e) x2 2x 5 x 1 5 0 ; f) x 5 2x 3 ; 2 g) x 1 x 21 x2 13 = 0 ; h) x 2 + 7 x = 3x 4. Dạng 2. Giải bất phương trình Bài 3. Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số: a) 6 3x 0 ; b) 2x 3 6 (3 4x) ; c) (x 1)2 x(x 3) ; d) (x 2)(x 2) x(x 4) ; e) (x 2)2 2x(x 2) 4 ; f) (x 2)(x 4) (x 2)(x 8) 20; 3 x 1 x 1 5x2 3 3x 1 x(2x 3) g) 2 3 ; h) 5. 8 4 5 4 2 Dạng 3. Giải bài toán bằng cách lập phương trình Bài 4. Một người đi xe đạp từ A đến B với vận tốc 20km/h, lúc quay về đi với vận tốc 15km/h nên thời gian về hơn thời gian đi 10 phút. Tính quãng đường AB. Bài 5. Bạn Hùng đi xe máy từ A đến B với vận tốc 40km/h và đi từ B về A với vận tốc 30km/h. Tổng thời gian mà bạn Hùng cả đi và về hết 1 giờ 10 phút. Tính quãng đường AB. Bài 6. Hai xe khởi hành cùng một lúc từ hai địa điểm A và B, đi ngược chiều nhau và gặp nhau sau 2 giờ. Biết vận tốc xe đi từ A nhỏ hơn vận tốc xe đi từ B là 10km/h. Tìm vận tốc mỗi xe biết quãng đường AB dài 220km. Bài 7. Một xe máy từ A đến B với vận tốc dự định 30km/h. Đi được nửa quãng đường xe máy tăng vận tốc lên 40km/h nên đến B sớm hơn dự định 30 phút. Tính quãng đường AB. Bài 8. Một người đi xe máy dự định đi từ A đến B với vận tốc 32km/h. Sau khi đi được 1 giờ với vận tốc ấy, người đó phải dừng lại 15 phút để giải quyết công việc. Do đó, để đến B đúng thời gian đã định, người đó phải tăng vận tốc thêm 4km/h. Tính quãng đường AB. Bài 9. Một xuồng máy đi xuôi từ bến A đến bến B sau đó lại đi ngược từ bến B về bến A .Thời gian đi xuôi ít hơn thời gian đi ngược là 20 phút. Biết vận tốc dòng nước là 2km/h, vận tốc của xuồng máy là 20km/h. Tính quãng đường từ bến A đến bến B. Bài 10. Một công nhân được giao làm một số sản phẩm trong một thời gian nhất định. Người đó dự định làm mỗi ngày 45 sản phẩm. Sau khi làm được hai ngày, người đó nghỉ 1 ngày, nên để hoàn thành công việc đúng kế hoạch, mỗi ngày người đó phải làm thêm 5 sản phẩm. Tính số sản phẩm người đó được giao. Bài 11. Một xí nghiệp kí hợp đồng dệt một số tấm thảm len trong 16 ngày. Do cải tiến kĩ thuật, năng suất tăng 20% nên không những xí nghiệp đã hoàn thành kế hoạch sớm 2 ngày mà còn dệt thêm được 24 tấm nữa. Tính số tấm thảm len mà xí nghiệp phải dệt theo hợp đồng. Bài 12. Tìm số tự nhiên có 2 chữ số. Biết rằng tổng của 2 chữ số là 10 và nếu đổi chỗ 2 chữ số được số mới lớn hơn số cũ 36. Bài 13. Một khu vườn hình chữ nhật có chu vi là 56m. Nếu tăng chiều rộng thêm 4m và giảm chiều dài thêm 4m thì diện tích tăng 8m2. Tính chiều dài và chiều rộng khu vườn. Bài 14. Năm nay tuổi mẹ là 36 tuổi, tuổi con là 9 tuổi. Hỏi cách đây bao nhiêu năm tuổi mẹ gấp 10 lần tuổi con? Trang 4
- Dạng 4. Hình học Bài 15. Cho ABC có các đường cao BK và CI cắt nhau tại H. a) Chứng minh AI.AB = AK.AC; b) Chứng minh ∆AIK và ∆ACB đồng dạng; c) Chứng minh BI.BA + CK.CA = BC2. Bài 16. Cho ∆ABC vuông tại A, có AB = 6cm, AC = 8cm. Đường phân giác của góc ABC cắt cạnh AC tại D. Từ điểm C kẻ CE vuông góc với BD tại E. a) Tính tỉ số của AD và DC; b) Chứng minh BD.EC = AD.BC; c) Chứng minh CD.BE = BC.CE; d) Gọi EH là đường cao của ∆EBC. Chứng minh CH.CB = ED.EB; Bài 17. Cho hình thang cân ABCD có AB // DC và AB < DC, đường chéo BD vuông góc với cạnh bên BC. Vẽ đường cao BH. a) Chứng minh ∆BDC và ∆HBC đồng dạng; b) Chứng minh BC2 = HC.CD; c) Cho BC = 15cm, DC = 25cm. Tính HD; d) Tính diện tích hình thang ABCD. Bài 18. Cho ∆ABC vuông tại A (AB < AC), đường cao AH. a) Chứng minh ∆HBA và ∆ABC đồng dạng; b) Chứng minh ∆HAC và ∆HBA đồng dạng; c) Trên tia đối của tia AB lấy điểm D sao cho AD = AB. Gọi M là trung điểm của AH. Chứng minh AC.BH = AM.BD; d) Chứng minh MC vuông góc với DH. Bài 19. Cho ∆ABC có đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC. a) Chứng minh ∆ABH và ∆AHD đồng dạng; b) Chứng minh HE2 = AE.EC; c) Gọi M là giao điểm của BE và CD. Chứng minh ∆DBM và ∆ECM đồng dạng. Bài 20. Cho hình thang vuông ABCD vuông tại A và D, có hai đường chéo vuông góc với nhau tại O, AB = 4cm, CD = 9cm. a) Chứng minh ∆AOB và ∆DAB đồng dạng; b) Chứng minh OA.OD = OB.OC; c) Tính tỉ số diện tích của ∆OAB và ∆OCD. Bài 21. Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = 4cm, AC = 5cm và A’C = 13cm. Tính thể tích và diện tích xung quanh của hình hộp chữ nhật đó. Bài 22. Một lăng trụ đứng có đáy là tam giác vuông, chiều cao lăng trụ là 7cm. Độ dài hai cạnh góc vuông của đáy là 3cm và 4cm. Hãy tính: a) Diện tích một mặt đáy. b) Diện tích mặt xung quanh. c) Diện tích toàn phần. d) Thể tích lăng trụ. Trang 5
- Dạng 5. Nâng cao Bài 23. Chứng minh các bất đẳng thức sau: (x y)2 a) xy ; 4 b) x2 y 2 5 2(x 2y) ; c) x2 y 2 z 2 3 2(x y z) . Bài 24. Cho a, b, c là các số dương. Chứng minh rằng: a) a3 b 3 abc ab(a b c) ; b) a3 b 3 c 3 3abc ; 1 1 1 9 c) ; abc abc ab bc ac d) a b c . c a b Bài 25. Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: 1. Tìm giá trị nhỏ nhất của biểu thức: 4x 3 a) A x 1 x 3 ; b) B . x2 1 2. Tìm giá trị lớn nhất của biểu thức: 2x2 4x 9 a) C (x2 4x 1)(21 4x x) 2 ; b) D . x2 2x 4 HẾT Trang 6