Bộ đề Ôn tập kỳ thi tuyển vào Lớp 10
Bạn đang xem tài liệu "Bộ đề Ôn tập kỳ thi tuyển vào Lớp 10", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- bo_de_on_tap_ky_thi_tuyen_vao_lop_10.doc
Nội dung text: Bộ đề Ôn tập kỳ thi tuyển vào Lớp 10
- BỘ ĐỀ ÔN TẬP KỲ THI TUYỂN LỚP 10 NĂM 2021 (ONLINE) Môn: Toán 9 Thời gian: 80’/1 Đề ôn (Không kể thời gian giao đề) MĐ:1105 ĐỀ SỐ 1 Câu 1: a) Cho biết a = 2 3 và b = 2 3 . Tính giá trị biểu thức: P = a + b – ab. 3x + y = 5 b) Giải hệ phương trình: . x - 2y = - 3 1 1 x Câu 2: Cho biểu thức P = : (với x > 0, x 1) x - x x 1 x - 2 x 1 a) Rút gọn biểu thức P. 1 b) Tìm các giá trị của x để P > . 2 Câu 3: Cho phương trình: x2 – 5x + m = 0 (m là tham số). a) Giải phương trình trên khi m = 6. b) Tìm m để phương trình trên có hai nghiệm x1, x2 thỏa mãn: x1 x2 3 . Câu 4: Cho đường tròn tâm O đường kính AB. Vẽ dây cung CD vuông góc với AB tại I (I nằm giữa A và O ). Lấy điểm E trên cung nhỏ BC ( E khác B và C ), AE cắt CD tại F. Chứng minh: a) BEFI là tứ giác nội tiếp đường tròn. b) AE.AF = AC2. c) Khi E chạy trên cung nhỏ BC thì tâm đường tròn ngoại tiếp ∆CEF luôn thuộc một đường thẳng cố định. 1 1 Câu 5: Cho hai số dương a, b thỏa mãn: a + b 2 2 . Tìm giá trị nhỏ nhất của biểu thức: P = . a b ĐỀ SỐ 1 Câu 1: a) Ta có: a + b = (2 3 ) + (2 3 ) = 4 a.b = (2 3 )(2 3 = 1. Suy ra P = 3. 3x + y = 5 6x + 2y = 10 7x = 7 x = 1 b) . x - 2y = - 3 x - 2y = - 3 y = 5 - 3x y = 2 Câu 2: 1 1 x a) P = : x - x x 1 x - 2 x 1 2 1 x x 1 . x x 1 x x 1 x 2 1 x x 1 x 1 x 1 x - 1 . x x 1 x x. x x x - 1 1 b) Với x > 0, x 1 thì 2 x - 1 x x > 2 . x 2 1 Toán 9
- 1 Vậy với x > 2 thì P > . 2 Câu 3: a) Với m = 6, ta có phương trình: x2 – 5x + 6 = 0 ∆ = 25 – 4.6 = 1 . Suy ra phương trình có hai nghiệm: x1 = 3; x2 = 2. b) Ta có: ∆ = 25 – 4.m 25 Để phương trình đã cho có nghiệm thì ∆ 0 m (*) 4 Theo hệ thức Vi-ét, ta có x1 + x2 = 5 (1); x1x2 = m (2). Mặt khác theo bài ra thì x1 x2 3 (3). Từ (1) và (3) suy ra x1 = 4; x2 = 1 hoặc x1 = 1; x2 = 4 (4) Từ (2) và (4) suy ra: m = 4. Thử lại thì thoả mãn. Câu 4: · 0 a) Tứ giác BEFI có: BIF 90 (gt) (gt) C E B· EF B· EA 900 (góc nội tiếp chắn nửa đường tròn) Suy ra tứ giác BEFI nội tiếp đường tròn đường kính F BF A B b) Vì AB CD nên A»C A»D , I O suy ra A· CF A· EC . Xét ∆ACF và ∆AEC có góc A chung và D A· CF A· EC . AC AE Suy ra: ∆ACF ~ với ∆AEC AF AC AE.AF = AC2 c) Theo câu b) ta có A· CF A· EC , suy ra AC là tiếp tuyến của đường tròn ngoại tiếp ∆CEF (1). Mặt khác A· CB 900 (góc nội tiếp chắn nửa đường tròn), suy ra AC CB (2). Từ (1) và (2) suy ra CB chứa đường kính của đường tròn ngoại tiếp ∆CEF, mà CB cố định nên tâm của đường tròn ngoại tiếp ∆CEF thuộc CB cố định khi E thay đổi trên cung nhỏ BC. Câu 5: Ta có (a + b)2 – 4ab = (a - b)2 0 (a + b)2 4ab a + b 4 1 1 4 4 P , mà a + b 2 2 ab a + b b a a + b a + b 2 4 4 a - b 0 P 2 . Dấu “ = ” xảy ra a = b = 2 . Vậy: min P = 2 . a + b 2 2 a + b = 2 2 Lời bình: Câu IIb Các bạn tham khảo thêm một lời giải sau 1) Ta có a = 1. = 25 4m. Gọi x1, x2 là các nghiệm nếu có của phương trình. b Từ công thức x | x x | . Vậy nên phương trình có hai nghiệm x 1, x2 thoă mãn 1,2 2a 1 2 | a | a 1 |x1 x2| = 3 | x x | 3 = 9 25 4m = 9 m = 4 . 1 2 | a | 2) Có thể bạn dang băn khoăn không thấy điều kiện 0. Xin đừng, bởi |x 1 x2| = 3 = 9. Điều băn khoăn ấy càng làm nổi bật ưu điểm của lời giải trên. Lời giải đã giảm thiểu tối đa các phép toán, điều ấy đồng hành giảm bớt nguy sơ sai sót. Câu IVb 2 Toán 9
- Để chứng minh một đẳng thức của tích các đoạn thẳng người ta thường gán các đoạn thẳng ấy vào một cặp tam giác đồng dạng. Một thủ thuật để dễ nhận ra cặp tam giác đồng dạng là chuyển "hình thức" đẳng thức đoạn thẳng ở dạng tích về dạng thương. Khi đó mỗi tam giác được xét sẽ có cạnh hoặc là nằm cùng một vế, hoặc cùng nằm ở tử thức, hoặc cùng nằm ở mẫu thức. AC AE Trong bài toán trên AE.AF = AC2 . Đẳng thức mách bảo ta xét các cặp tam giác đồng AF AC dạng ACF (có cạnh nằm vế trái) và ACE (có cạnh nằm vế phải). Khi một đoạn thẳng là trung bình nhân của hai đoạn thẳng còn lại, chẳng hạn AE.AF = AC 2 thì AC là cạnh chung của hai tam giác, còn AE và AF không cùng năm trong một tam giác cần xét. Trong bài toán trên AC là cạnh chung của hai tam giác ACE và ACF Câu IVc Nếu ( ) là đường thẳng cố định chứa tâm của đường tròn biến thiên có các đặc điểm sau: + Nếu đường tròn có hai điểm cố định thì ( ) là trung trực của đoạn thẳng nối hai điểm cố định ấy. + Nếu đường tròn có một điểm cố định thì ( ) là đường thẳng đi qua điểm đó và hoặc là ( ) ( '), hoặc là ( ) // ( '), hoặc là ( ) tạo với ( ') một góc không đổi (trong đó ( ') là một đường thẳng cố định có sẵn). Trong bài toán trên, đường tròn ngoại tiếp CEF chỉ có một điểm C là cố định. Lại thấy CB CA mà CA cố định nên phán đoán có thể CB là đường thẳng phải tìm. Đó là điều dẫn dắt lời giải trên. Câu V Việc tìm GTNN của biểu thức P bao giờ cũng vận hành theo sơ đồ "bé dần": P B, (trong tài liệu này chúng tôi sử dụng B - chữ cái đầu của chữ bé hơn). 1) Giả thiết a + b 2 2 đang ngược với sơ đồ "bé dần" nên ta phải chuyển hoá a + b 2 2 1 1 . a b 2 2 1 Từ đó mà lời giải đánh giá P theo . a b 1 1 4 2) với a > 0, b > 0 là một bất đẳng thức đáng nhớ. Tuy là một hệ quả của bất đẳng a b a b Cô-si, nhưng nó được vận dụng rất nhiều. Chúng ta còn gặp lại nó trong một số đề sau. 3) Các bạn tham khảo lời giải khác của bài toán như là một cách chứng minh bất đẳng thức trên. 1 1 Co si 2 Co si 2.2 4 4 Với hai số a > 0, b > 0 ta có P 2 . Dấu đẳng thức có khi a = a b ab a b a b 2 2 b =2 . Vậy minP = 2 . 3 Toán 9
- ĐỀ SỐ 2 1 1 Câu 1: a) Rút gọn biểu thức: . 3 7 3 7 b) Giải phương trình: x2 – 7x + 3 = 0. Câu 2: a) Tìm tọa độ giao điểm của đường thẳng d: y = - x + 2 và Parabol (P): y = x2. 4x + ay = b b) Cho hệ phương trình: . x - by = a Tìm a và b để hệ đã cho có nghiệm duy nhất ( x;y ) = ( 2; - 1). Câu 3: Một xe lửa cần vận chuyển một lượng hàng. Người lái xe tính rằng nếu xếp mỗi toa 15 tấn hàng thì còn thừa lại 5 tấn, còn nếu xếp mỗi toa 16 tấn thì có thể chở thêm 3 tấn nữa. Hỏi xe lửa có mấy toa và phải chở bao nhiêu tấn hàng. Câu 4: Từ một điểm A nằm ngoài đường tròn (O;R) ta vẽ hai tiếp tuyến AB, AC với đường tròn (B, C là tiếp điểm). Trên cung nhỏ BC lấy một điểm M, vẽ MI AB, MK AC (I AB,K AC) a) Chứng minh: AIMK là tứ giác nội tiếp đường tròn. b) Vẽ MP BC (P BC). Chứng minh: M· PK M· BC . c) Xác định vị trí của điểm M trên cung nhỏ BC để tích MI.MK.MP đạt giá trị lớn nhất. x - 2009 1 y - 2010 1 z - 2011 1 3 Câu 5: Giải phương trình: x - 2009 y - 2010 z - 2011 4 ĐỀ SỐ 2 1 1 3 7 3 7 2 7 Câu 1: a) 7 3 7 3 7 3 7 3 7 2 b) ∆ = 49 – 4.3 = 37; phương trình có 2 nghiệm phân biệt: 7 37 7 37 x ;x . 1 2 2 2 Câu 2: a) Hoành độ giao điểm của đường thẳng (d) và Parabol (P) là nghiệm của phương trình: - x + 2 = x2 x2 + x – 2 = 0. Phương trình này có tổng các hệ số bằng 0 nên có 2 nghiệm là 1 và – 2. + Với x = 1 thì y = 1, ta có giao điểm thứ nhất là (1;1) + Với x = - 2 thì y = 4, ta có giao điểm thứ hai là (- 2; 4) Vậy (d) giao với (P) tại 2 điểm có tọa độ là (1;1) và (- 2; 4) b) Thay x = 2 và y = -1 vào hệ đã cho ta được: 8 - a = b a = 2 + b a = 5 . 2 + b = a 8 - 2 + b b b = 3 Thử lại : Thay a = 5 và b = 3 vào hệ đã cho thì hệ có nghiệm duy nhất (2; - 1). Vậy a = 5; b = 3 thì hệ đã cho có nghiệm duy nhất (2; - 1). Câu 3: Gọi x là số toa xe lửa và y là số tấn hàng phải chở Điều kiện: x N*, y > 0. 15x = y - 5 Theo bài ra ta có hệ phương trình: . Giải ra ta được: x = 8, y = 125 (thỏa mãn) 16x = y + 3 Vậy xe lửa có 8 toa và cần phải chở 125 tấn hàng. Câu 4: 4 Toán 9
- a) Ta có:A· IM A· KM 900 (gt), suy ra tứ giác AIMK nội tiếp đường tròn đường kính AM. b) Tứ giác CPMK có M· PC M· KC 900 (gt). Do đó CPMK là tứ giác nội tiếp M· PK M· CK (1). Vì KC là tiếp tuyến của (O) nên ta có: M· CK M· BC (cùng chắn M¼ C ) (2). Từ (1) và (2) suy ra M· PK M· BC (3) c) Chứng minh tương tự câu b ta có BPMI là tứ A giác nội tiếp. Suy ra: M· IP M· BP (4). Từ (3) và (4) suy ra · · K MPK MIP . I M Tương tự ta chứng minh được M· KP M· PI . MP MI H C Suy ra: MPK ~ ∆MIP B MK MP P MI.MK = MP2 MI.MK.MP = MP3. O Do đó MI.MK.MP lớn nhất khi và chỉ khi MP lớn nhất (4) - Gọi H là hình chiếu của O trên BC, suy ra OH là hằng số (do BC cố định). Lại có: MP + OH OM = R MP R – OH. Do đó MP lớn nhất bằng R – OH khi và chỉ khi O, H, M thẳng hàng hay M nằm chính giữa cung nhỏ BC (5). Từ (4) và (5) suy ra max (MI.MK.MP) = ( R – OH )3 M nằm chính giữa cung nhỏ BC. Câu 5: Đặt x - 2009 a; y - 2010 b; z - 2011 c (với a, b, c > 0). Khi đó phương trình đã cho trở thành: a - 1 b - 1 c - 1 3 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 0 a b c 4 4 a a 4 b b 4 c c 2 2 2 1 1 1 1 1 1 0 a = b = c = 2 2 a 2 b 2 c Suy ra: x = 2013, y = 2014, z = 2015. Lời bình: Câu IVc Lời bình sau Đề số 1 cho thấy: Nếu có AE.AF.AC = AC3 AE.AF = AC2 thì thường AC là cạnh chung của hai tam giác ACE và ACF. Quan sát hình vẽ ta thấy MP là cạnh chung của hai tam giác MPI và MPK, nên ta phán đoán MI.MK.MP= MP3. Nếu phán đoán ấy là đúng thì GTLN của MI.MK.MP chính là GTLN của MP. Đó là điều dẫn dắt lời giải trên. Câu IIa Lời nhắn Hoành độ giao điểm của hai đồ thị (d): y = kx + b và (P) : y = ax 2 là nghiệm của phương trình ax2 = kx + b (1). Số nghiệm của phương trình (1) bằng số giao điểm của đồ thị hai hàm số trên. Câu V 5 Toán 9
- 1) Việc đặt a, b, c thay cho các căn thức là cách làm để dễ nhìn bài toán, Với mọi số dương a, b, c ta luôn có a 1 b 1 c 1 3 . (1) a2 b2 c2 4 Thay vì đặt câu hỏi khi nào thì dấu đẳng thức xẩy ra, người ta đặt bài toán giải phương trình a 1 b 1 c 1 3 . (2) a2 b2 c2 4 a 1 1 Vai trò của a, b, c đều bình đẳng nên trong (1) ta nghĩ đến đánh giá . a2 4 a 1 1 a 1 1 (a 2)2 Thật vậy 0 0 . Dấu đẳng thức có khi và chỉ khi a = 2. Tương a2 4 a2 4 a2 b 1 1 c 1 1 tự ta cũng có , . Dấu đẳng thức có khi và chỉ khi b = 2, c = 2. b2 4 c2 4 2) Mỗi giá trị của biến cân bằng bất đẳng thức được gọi là điểm rơi của bất đẳng thức ấy. Theo đó, bất đẳng thức (1) các biến a, b, c đếu có chung một điểm rơi là a = b = c = 2. Khi vai trò của các biến trong bài toán chứng minh bất đẳng thức bình đẳng với nhau thì các biến ấy có chung một điểm rơi. Phương trình diễn tả dấu bằng trong bất đẳng thức được gọi là "phương trình điểm rơi". 3) Phương trình (2) thuộc dạng "phương trình điểm rơi" a 1 b 1 c 1 1 Tại điểm rơi a = b = c = 2 ta có . a2 b2 c2 4 3 1 1 1 Điều đó cắt nghĩa điểm mấu chốt của lời giải là tách : 4 4 4 4 a 1 1 b 1 1 c 1 1 (2) 2 2 2 0 . a 4 b 4 c 4 4) Phần lớn các phương trình chứa hai biến trở lên trong chương trình THCS đều là "phương trình điểm rơi". ĐỀ SỐ 3 Câu 1: Giải phương trình và hệ phương trình sau: 2x + y = 1 a) x4 + 3x2 – 4 = 0 b) 3x + 4y = -1 Câu 2: Rút gọn các biểu thức: 3 6 2 8 1 1 x + 2 x a) A = b) B = . ( với x > 0, x 4 ). 1 2 1 2 x 4 x + 4 x 4 x Câu 3: a) Vẽ đồ thị các hàm số y = - x2 và y = x – 2 trên cùng một hệ trục tọa độ. b) Tìm tọa độ giao điểm của các đồ thị đã vẽ ở trên bằng phép tính. Câu 4: Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O;R). Các đường cao BE và CF cắt nhau tại H. a) Chứng minh: AEHF và BCEF là các tứ giác nội tiếp đường tròn. b) Gọi M và N thứ tự là giao điểm thứ hai của đường tròn (O;R) với BE và CF. Chứng minh: MN // EF. c) Chứng minh rằng OA EF. 6 Toán 9
- Câu 5: Tìm giá trị nhỏ nhất của biểu thức: P = x2 - x y + x + y - y + 1 ĐỀ SỐ 3 Câu 1: a) Đặt x2 = y, y 0. Khi đó phương trình đã cho có dạng: y2 + 3y – 4 = 0 (1). Phương trình (1) có tổng các hệ số bằng 0 nên (1) có hai nghiệm y1 = 1; y2 = - 4. Do y 0 nên chỉ có y1 = 1 thỏa mãn. Với y1 = 1 ta tính được x = 1. Vậy phương trình có nghiệm là x = 1. 2x + y = 1 8x + 4y = 4 5x = 5 x = 1 b) 3x + 4y = -1 3x + 4y = -1 2x + y = 1 y = - 1 3 6 2 8 3 1 2 2 1 2 Câu 2: a) A = 3 2 1 2 1 2 1 2 1 2 1 1 x + 2 x 1 1 x ( x + 2) b) B = . = . x 4 x + 4 x 4 x x 2 x 2 ( x 2)2 x 1 1 x 2 x 2 4 = x 2 x 2 x - 4 x - 4 Câu 3: a) Vẽ đồ thị các hàm số y = - x2 và y = x – 2. b) Hoành độ giao điểm của đường thẳng y = x – 2 và parabol y = - x2 là nghiệm của phương trình:- x2 = x – 2 x2 + x – 2 = 0 O Suy ra các giao điểm cần tìm là: L( 1; -1 ) và K ( - 2; - 4 ) (xem hình vẽ). Câu 4: · · a) Tứ giác AEHF có: AEH AFH 900 (gt). Suy ra AEHFlà tứ giác nội tiếp. · · - Tứ giác BCEF có: BEC BFC 900 (gt). Suy ra BCEF là tứ giác nội tiếp. · · · · · b) Tứ giác BCEF nội tiếp suy ra:B EF BCF (1). Mặt khácB MN BCN =B CF · · (góc nội tiếp cùng chắn B»N ) (2). Từ (1) và (2) suy ra: BEF BMN MN // EF. · · c) Ta có: ABM ACN ( do BCEF nội tiếp) A¼M A»N AM = AN, lại có OM = ON nên suy ra OA là đường trung trực của MN OA MN , mà MN song song với EF nên suy ra OA EF . Câu 5: ĐK: y > 0 ; x R. Ta có: P = 2 y 1 3y y 3 x2 - x y + x + y - y + 1 = x2 - x( y - 1) + + - + 4 4 2 4 - 1 2 2 x = y 1 3 1 2 2 3 x - y . Dấu “=” xảy ra . 2 4 3 3 3 1 y = 9 2 Suy ra: Min P = . 3 7 Toán 9
- Để góp phần định hướng cho việc dạy - học ở các trường nhất là việc ôn tập, rèn luyện kĩ năng cho học sinh sát với thực tiễn giáo dục của tỉnh nhà nhằm nâng cao chất lượng các kì thi tuyển sinh. - Môn Toán được viết theo hình thức Bộ đề ôn thi, gồm hai phần: một phần ôn thi vào lớp 10 THPT, một phần ôn thi vào lớp 10 THPT chuyên dựa trên cấu trúc đề thi của Sở. Mỗi đề thi đều có lời giải tóm tắt và kèm theo một số lời bình. Bộ tài liệu ôn thi này do các thầy, cô giáo là lãnh đạo, chuyên viên phòng Giáo dục Trung học - Sở GDĐT; cốt cán chuyên môn các bộ môn của Sở; các thầy, cô giáo là Giáo viên giỏi tỉnh biên soạn. Hy vọng đây là Bộ tài liệu ôn thi có chất lượng, góp phần quan trọng nâng cao chất lượng dạy - học ở các trường THCS và kỳ thi tuyển sinh vào lớp 10 THPT, THPT chuyên năm học 2020- 2021 và những năm tiếp theo. Mặc dù đã có sự đầu tư lớn về thời gian, trí tuệ của đội ngũ những người biên soạn, song không thể tránh khỏi những hạn chế, sai sót. Mong được sự đóng góp của các thầy, cô giáo và các em học sinh trong toàn tỉnh để Bộ tài liệu được hoàn chỉnh hơn. Chúc các thầy, cô giáo và các em học sinh thu được kết quả cao nhất trong các kỳ thi sắp tới! TRỌN BỘ 40 ĐỀ THI VÀO 10 THPT + 6 ĐỀ ÔN THI CHUYÊN VÀO 10 : VỚI LỜI GIẢI CHI TIẾT VÀ LỜI BÌNH GIÚP QUÝ GV GIẢNG DẠY HAY NHẤT VÀ CHUYÊN SÂU VỚI LỜI GIẢI LIÊN HỆ ZALO 0943892307 ĐỂ MUA TRỌN GÓI CHỈ VỚI 200K ( ƯU TIÊN CHO 10GV NHANH TAY NHẤT ) 8 Toán 9