Giáo án Đại số nâng cao Lớp 11 - Tiết 75, Bài 1: Khái niệm đạo hàm (Tiết 3) - Nguyễn Văn Chấn

doc 2 trang nhatle22 6840
Bạn đang xem tài liệu "Giáo án Đại số nâng cao Lớp 11 - Tiết 75, Bài 1: Khái niệm đạo hàm (Tiết 3) - Nguyễn Văn Chấn", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docgiao_an_dai_so_nang_cao_lop_11_tiet_75_bai_1_khai_niem_dao_h.doc

Nội dung text: Giáo án Đại số nâng cao Lớp 11 - Tiết 75, Bài 1: Khái niệm đạo hàm (Tiết 3) - Nguyễn Văn Chấn

  1. Giáo án ĐSNC- Nguyễn Văn Chấn- THPT Ân Thi Ngày soạn 20/3/2008 Chương V : Đạo hàm Tiết 75 Đ1- Khái niệm đạo hàm ( tiết 3) A- Mục tiêu: 1)Về kiến thức: - Nắm được khái niệm đạo hàm trên một khoảng. - Hiểu được xây dựng công thức đạo hàm của một số hàm số thường gặp 2) Về kĩ năng: - Vận dụng qui tắc tìm đạo hàm theo định nghĩa để xây dựng công thức đạo hàm của một số hàm số thường gặp. 3) Về tư duy và thái độ: - Giáo dục sự ham mê môn toán, tính chính xác, làm việc khoa học B-Chuẩn bị và phương tiện dạy học: 1) Về kiến thức : Nắm vững nội dung 2 bước tìm đạo hàm theo định nghĩa . - Xem lại khai triển nhị thức Niu Tơn 2) Phương tiện,đồ dùng: Phiếu học tập C- Phương pháp dạy học: Tổng hợp : Tổ chức hoạt động nhóm,vấn đáp, gợi mở. D- Tiến trình bài giảng và các hoạt động 1) ổn định tổ chức lớp: 2) Kiểm tra bài cũ : HS1 : Nêu định nghĩa đạo hàm của hàm số tại một điểm x0? Khi nào thì gọi là đạo hàm? HS2: Nêu nội dung qui tắc 2 bước tìm đạo hàm theo định nghĩa 3) Bài mới: (Các hoạt động) Hoạt động 3 : Nhận thức khái niệm mới Hoạt động của GV Hoạt động của HS 5. Đạo hàm trên một khoảng a) Khái niệm. Xét mọi x  (-∞;+∞) ĐN sgk: y (x x)3 x 3 x(3x 2 3x. x x 2 ) 1) Hàm số f có đh trên khoảng J nếu nó có đh f’(x) tại mọi điểm x y thuộc J lim lim(3x2 3x. x x2 ) 3x2 2) Nếu hàm số f có đh trên J thì x 0 x x 0 hàm số f’ xác định bởi Vậy f’(x) = 3x2. f ' : J Ă gọi là đh của hàm x f '(x) Trang 1
  2. Giáo án ĐSNC- Nguyễn Văn Chấn- THPT Ân Thi số f Ví dụ 3: cho HS lên tìm đh tại H4: điểm x bất kì  (-∞;+∞) a) chứng minh y = c có ĐH trên R ,tìm ĐH Cho HS hoạt động 4: Chia HS làm đó 3 nhóm cho 3 ý b) Chứng minh hàm số y = x ,có ĐH trên R, tìm ĐH đó. c) Chứng minh y = x có ĐH trên (0;+∞),tìm ĐH đó Hoạt động 4: Vận dụng qui tắc b) Đạo hàm của một số hàm số Ví dụ 4: thường gặp a) Tìm ĐH của hàm số y = x5. GV nêu định lí SGK b) Tìm ĐH của hàm số y = x tại x = 4. Chứng minh ĐH của hàm số y = xn 1 H5 : (nN; n >3) là y' 2 x Tính f’(-1) ; f’(1) nếu có trong các TH sau : Chú ý: Hàm số y = x xác định tại a) f(x) = x10; b) f(x) = x x = 0 ,nhưng không có ĐH tại đó + Cho HS làm ví dụ: 4) Củng cố bài: Nhắc lại công thức ĐH của một số hàm số thường gặp? 5) Hướng dẫn học ở nhà:Bài tập 7 đến 9 SGK Trang 2