Đề thi tuyển sinh vào Lớp 10 môn Toán (Chuẩn kiến thức)

docx 2 trang nhatle22 3580
Bạn đang xem tài liệu "Đề thi tuyển sinh vào Lớp 10 môn Toán (Chuẩn kiến thức)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docxde_thi_tuyen_sinh_vao_lop_10_mon_toan_chuan_kien_thuc.docx

Nội dung text: Đề thi tuyển sinh vào Lớp 10 môn Toán (Chuẩn kiến thức)

  1. ĐỀ THI TUYỂN SINH VÀO LỚP 10 THPT Phần 1: Trắc nghiệm (2,0 điểm) Hãy chọn phương án trả lời đúng và viết chữ cái đứng trước phương án đó vào bài làm Câu 1. Tìm tất cả các giá trị của m để hàm số y = (1 – m)x + m + 1 đồng biến trên R A. m > 1B. m -1 2 Câu 2. Phương trình x 2x 1 0 có 2 nghiệm x1; x2 . Tính x1 x2 A.Bx.1 C .x D2 . 2 x1 x2 1 x1 x2 2 x1 x2 1 2 Câu 3. Cho điểm M(xM; yM) thuộc đồ thị hàm số y = -3x . Biết xM = - 2. Tính yM A. yM = 6B. y M = -6C. y M = -12D. y M = 12 x y 2 Câu 4. Hệ phương trình có bao nhiêu nghiệm ? 3x y 1 A. 0B. 1C. 2D. Vô số Câu 5. Với các số a, b thoả mãn a < 0, b < 0 thì biểu thức a ab bằng A.B .Ca. 2Db. a3b a 2b a3b Câu 6. Cho ∆ABC vuông tại A có AB = 3cm, AC = 4cm. Tính độ dài đường cao AH của ∆ABC 12 5 12 A.BA.H C . D. cm AH cm AH cm 7 2 5 7 AH cm 2 Câu 7. Cho đường tròn (O; 2cm) và (O’; 3cm). biết OO’ = 6cm. Số tiếp tuyến chung của 2 đường tròn là A. 1B. 2C. 3D. 4 Câu 8. Một quả bóng hình cầu có đường kính 4cm. Thể tích quả bóng là 32 32 256 256 A. B. C . cDm. 3 cm3 cm3 cm3 3 3 3 3 Phần 2: Tự luận (8,0 điểm) Câu 1. (1,0 điểm) 1) Rút gọn biểu thức A 3 2 2 3 2 2 2 1 6 2) Chứng minh rằng . a 3 1 Với a 0, a 9 a 3 a 3 a 9 Câu 2. (1,5 điểm) Cho phương trình x2 – (m – 2)x - 6 = 0 (1) (với m là tham số) 1) Giải phương trình (1) với m = 0 2) Chứng minh rằng với mọi giá trị của m phương trình luôn có 2 nghiệm phân biệt 2 3) Gọi x1, x2 là 2 nghiệm của phương trình . Tìm các giá trị của m để x2 x1x2 (m 2)x1 16 Câu 2: (2,5 điểm) 1) Xác định hàm số bậc nhất y = ax + b, biết rằng đồ thị hàm số đi qua điểm M(1; -1) và N(2; 1). 2) Cho phương trình: x2 2mx m2 m 3 0 (1), với m là tham số.
  2. a) Giải phương trình (1) với m = 4. b) Tìm các giá trị của m để phương trình (1) có hai nghiệm x1, x2 và biểu thức: P x1x2 x1 x2 đạt giá trị nhỏ nhất. Câu 4. (2,5 điểm) Qua điểm A năm ngoài đường tròn (O) vẽ 2 tiếp tuyến AB, AC của đường tròn (B, C là các tiếp điểm. Gọi E là trung điểm của đoạn AC, F là giao điểm thứ hai của EB với (O) 1) Chứng minh tứ giác ABOC là tứ giác nội tiếp và ∆CEF  ∆BEC 2) Gọi K là giao điểm thứ hai của AF với đường tròn (O). Chứng minh BF.CK = BK.CF 3) Chứng minh AE là tiếp tuyến của đường tròn ngoại tiếp ∆ABF