Đề thi Trung học phổ thông quốc gia môn Toán - Đề số 15

doc 11 trang nhatle22 9120
Bạn đang xem tài liệu "Đề thi Trung học phổ thông quốc gia môn Toán - Đề số 15", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_thi_trung_hoc_pho_thong_quoc_gia_mon_toan_de_so_15.doc

Nội dung text: Đề thi Trung học phổ thông quốc gia môn Toán - Đề số 15

  1. TÀI LIỆU HỌC TẬP CHẤT LƯỢNGBỘ ĐỀ THI THỬ THPT QUỐC GIA NĂM 2017 BỘ GIÁO DỤC VÀ ĐÀO TẠO KỲ THI TRUNG HỌC PHỔ THÔNG QUỐC GIA NĂM 2017 ĐỀ THI THỬ Bài thi môn: TOÁN SỐ 15 Thời gian làm bài: 90 phút, không kể thời gian phát (Đề thi có 07 trang) đề Câu 1. Hàm số y = 4x 3 - 3x + 1 có đồ thị là hình nào trong các hình sau? A. B. C. D. 2 Câu 2. Cho hàm số y = f (x) liên tục trên ¡ và có đạo hàm. f ¢(x) = x 3 (x + 1) (x - 2) . Hàm số y = f (x) có bao nhiêu cực trị? A. Có 3 điểm cực trị. B. Có 1 điểm cực trị. C. Không có cực trị. D. Có 2 điểm cực trị. Câu 3. Hàm số nào trong các hàm số sau đồng biến trên ¡ ? 4x + 1 A. y = 7x - 2sin 3x. B. y = x 3 + 2x 2 + 1. C. y = tan x. D.y = . x + 2 3x + 1 - 2 Câu 4. Tìm tiêm cận đứng của đồ thị hàm số (C ): y = . x 2 - x A. x = 0;x = 1. B. x = 0. C. (C ) không có tiệm cận đứng. D. x = 1. 1 |
  2. TÀI LIỆU HỌC TẬPBỘ ĐỀ THI THỬ THPT QUỐC GIA NĂM 2017 é ù Câu 5. Cho hàm số y = f (x) liên tục trên đoạn ëê- 2;3ûú , có đồ thị như hình bên. Khẳng định nào sau đây sai ? A. Hàm số không có đạo hàm tại điểm x = 0. B. Hàm số đạt giá trị nhỏ nhất bằng - 3. C. Hàm số đạt giá trị lớn nhất bằng 1. D. Hàm số nghịch biến trên khoảng (1;3). Câu 6. Cho hàm số y = x 3 + 6x 2 + 12x + 8 có đồ thị (C ) . Khẳng định nào sau đây sai ? A. Hàm số đồng biến trên ¡ . B. Đồ thị (C ) tiếp xúc với trục hoành. C. Phương trìnhx 3 + 6x 2 + 12x + 8 = m có nghiệm với mọi m . D. Hàm số đạt cực trị tạix = - 2 . x 2 + 1 Câu 7. Tìm giá trị nhỏ nhất của hàm sốy = . x 2 A. miny = 2 . B. miny = 0 . C. miny = 1 . D. Không tồn tại ¡ ¡ ¡ miny . ¡ Câu 8. Hình bên là đồ thị của hàm sốy = x 3 - 3x . Tìm tất cả các giá trị thực của tham sốm để phương 3 trìnhx - 3 x = 2m có 4 nghiệm phân biệt. A. - 2 < m < 0. B. - 2 £ m. C. - 1 £ m. D. - 1 < m < 0. Câu 9. Tìm các giá trị thực của tham số m để đường thẳngd : y = mx - 3m cắt đồ thị hàm số 3 2 (C ): y = x - 3x tại ba điểm phân biệt có hoành độ lần lượt làx1,x2,x3 thỏa mãn điều kiện 2 2 2 x1 + x2 + x3 = 15. 3 3 A. m = . B. m = - . C. m = 3. D. m = - 3. 2 2 1 Câu 10. Xét x,y là các số thực dương thỏa mãn điều kiệnx + y = 2 . ĐặtS = xy + . Khẳng định xy + 1 nào sau đây đúng ? A. Biểu thứcS không có giá trị lớn nhất. B. Biểu thứcS không có giá trị nhỏ nhất. 3 C. minS = . D. max S = 1. 2 2 |
  3. TÀI LIỆU HỌC TẬP CHẤT LƯỢNGBỘ ĐỀ THI THỬ THPT QUỐC GIA NĂM 2017 3 2 3 Câu 11. Tìm tất cả các giá trị thực của tham sốm để đồ thị hàm số( Cm ): y = - x + 3mx - 2m có hai điểm cực trị A,B sao cho đường thẳng AB vuông góc với đường thẳngd : y = - 2x . é 1 1ù é 1 1ù é 1 1ù é 1 1ù A. m Î ê- ; ú. B. m Î ê- ; ú. C. m Î ê- ; ú. D. m Î ê- ; ú. ê ú ê ú ê ú ê ú ë 2 2û ë 2 2û ë 2 2û ë 2 2û Câu 12.Tập xác định của hàm số y = log(2x - x 2)là: é ù ù é A.D = ëê0;2ûú. B.D = (- ¥ ;0ûúÈ ëê2;+ ¥ ). C.D = (- ¥ ;0)È (2;+ ¥ ). D.D = (0;2). 1 4 log 3 log 6 3log 9 Câu 13. Rút gọn biểu thứcP = 81 5 + 27 3 + 3 8 . A. P = 845. B. P = 854. C. P = 458. D. P = 485. Câu 14. Choa = log2 3,b = log3 5,c = log7 2. Hãy biểu diễnlog140 63 theo a,b,c. 2ac + 1 2ac + 1 A. log 63 = . B. log 63 = . 140 abc + c + 1 140 abc + 2c + 1 ac + 2 ac + 1 C. log 63 = . D. log 63 = . 140 abc + c + 1 140 abc + 2c + 1 Câu 15. Nghiệm của phương trình3x + 4x = 25 là: A. x = 2. B. x = 5. C. x = 3. D. x = 4. x 2 Câu 16. Đạo hàm của hàm số y = x 2 ln x - trên tập xác định là: 2 A. y¢= x (2ln x - 1). B. y¢= 2x (ln x - 1). C. y¢= 2x ln x. D. y¢= x ln x. 3+ 1 æ 3 ö - 1- 3 ç a ÷ a Câu 17. Rút gọn biểu thứcP = ç ÷ a,b > 0 . ç 3- 1 ÷ - 2 ( ) èçb ø÷ b A. P = a 3. B. P = a- 2. C. P = a2. D. P = a. Câu 18. Theo số liệu từ Tổng cục thống kê, dân số Việt Nam năm 2015 là 91,7 triệu người. Giả sử tỉ lệ gia tăng dân số hàng năm của Việt Nam trong giai đoạn 2015 – 2030 ở mức không đổi là 1,1% , hỏi đếm năm nào dân số Việt Nam đạt mức 113 triệu người. A. Năm 2033. B. Năm 2032. C. Năm 2013. D. Năm 2030. Câu 19. x = log3 4 là nghiệm phương trình nào trong các phương trình sau? A. log 9x - 4 + x.log 3 = log 2. B. log 9x - 4 - x.log 3 = log 9. 2 ( ) 2 3 2 ( ) 2 4 3 |
  4. TÀI LIỆU HỌC TẬPBỘ ĐỀ THI THỬ THPT QUỐC GIA NĂM 2017 log 9x - 4 + x.log 3 = log 2. x C. 2 ( ) 2 3 D. log2 (9 - 4)- x.log2 3 = log4 9. Câu 20. Cho số thựca,b thỏa mãn đồng thời các đẳng thức3- a.2b = 1152 và log a + b = 2 . Tính giá 5 ( ) trị biểu thức P = a - b. A. P = - 3. B. P = - 9. C. P = 8. D. P = - 6. Câu 21. Tìm tập nghiệm của bất phương trình:log4 x + log4 (10 - x)> 2. A. S = (0;10). B. S = (2;10). C. S = (8;10). ` D. S = (2;8). dx Câu 22. Tìm nguyên hàmI = . ò ex A. I = ex + C. B. I = - ex + C. C. I = - e- x + C. D. I = e- x + C. Câu 23. Tìm nguyên hàmI = ò sin x cos3 x.dx. sin4 x sin4 x cos4 x cos4 x A. I = + C. B. I = - + C. C. I = + C. D.I = - + C. 4 4 4 4 2 Câu 24. Diện tích hình phẳng giới hạn bởi hai đường y = (x - 6) ,y = 6x - x 2 là: A. 9. B. 8. C. 7. D. 6. Câu 25. Khẳng định nào sau đây sai ? 1 1 1 A. ò sin(1- x)dx = ò sin xdx. B. ò(1- x)dx = 0. 0 0 0 p p 1 2 2 x 2 C. x 2007 (1+ x)dx = . D. sin dx = 2 sin xdx. ò 2009 ò 2 ò - 1 0 0 dx Câu 26. Tìm nguyên hàmI = ò . x + x 1 A. I = 2ln( x + 1)+ C.B. I = 2ln + C. x + 1 æ 1 ö ç ÷ C. I = 2lnç x + ÷+ C. D. I = 2ln x + x + C. èç x ÷ø p Câu 27. Tìm các số thựcm > 1 sao choò(ln x + 1)dx = m. 1 A. m = e + 1. B. m = e2. C. m = 2e. D. m = e. 4 |
  5. TÀI LIỆU HỌC TẬP CHẤT LƯỢNGBỘ ĐỀ THI THỬ THPT QUỐC GIA NĂM 2017 Câu 28. Thể tích khối tròn xoay do hình phẳng giới hạn bởi các đườngy = ln x,y = 0,x = e quay quanh trục Ox là: (e2 - 1)p (e2 - 1)p (e2 + 1)p (e2 + 1)p A. . B. . C. . D. . 4 2 4 2 Câu 29. z = 3 - 2i là nghiệm phức của phương trình nào trong các phương trình dưới đây ? 3 A. x 2 - x + 3 - i = 0. B. x 2 + = 0. 2 C. x 2 + x + 3 = 0. D. x 2 - x - 2 + 10i = 0. Câu 30. Cho số phứcz = 1+ mi (m Î ¡ ) . Xác định m để z3 là một số thuần ảo. 3 A. m = ± . B. m = 3. C. m = - 3. D. m = 0. 3 Câu 31. Cho hai số phứcz = a + bi,z ' = a '+ b'i với (a,b,a ',b' Î ¡ ) . Số phức z.z' có phần thực là: A. aa '+ bb'. B. ab'- a 'b. C. a a '- bb'. D. ab'+ a 'b. Câu 32. Cho số phức z = a + a2i vớia Î ¡ . Khi đó điểm biểu diễn của số phức liên hợp củaz trên mặt phẳng tọa độ nằm trên: A. Đồ thị y = - x. B. Parabol y = - x 2. C. Parabol y = x 2. D. Đồ thị y = x. Câu 33. Tìm tập hợp nghiệm phức của phương trìnhz3 + 3z2 + 3z - 63 = 0. A. S = {3;3 + 2 3i;- 3 - 2 3i }. B. S = {3;- 3 + 2 3i;- 3 - 2 3i }. C. S = {3;- 3 + 2 3i;3 - 2 3i }. D. S = {3;3 - 2 3i;- 3 - 2 3i }. z Câu 34. Trên mặt phẳng tọa độ, tìm tập hợp các điểm M biểu diễn số phứcz thỏa mãn = 3. z - i æ ö ç9 ÷ 3 A. Đường tròn tâm I ç ;0÷ bán kính R = . èç8 ø÷ 8 æ ö ç 9÷ 9 B. Đường tròn tâm I ç0; ÷ bán kính R = . èç 8ø÷ 64 æ ö ç 9÷ 3 C. Đường tròn tâm I ç0; ÷ bán kính R = . èç 8ø÷ 8 æ ö ç 9÷ 3 D. Đường tròn tâm I ç0;- ÷ bán kính R = . èç 8ø÷ 8 5 |
  6. TÀI LIỆU HỌC TẬPBỘ ĐỀ THI THỬ THPT QUỐC GIA NĂM 2017 Câu 35.Nếu cạnh của một hình lập phương gấp lên k lần, vớik Î ¥ * , thì thể tích của nó gáp lên bao nhiêu lần ? k 3 A. lần. B. k lần. C. k 2 lần. D. k 3 lần. 3 Câu 36. Trong các loại khối đa diện đều sau, tìm khối đa diện có số cạnh gấp đôi số dỉnh. A. Khối hai mươi mặt đêu. B. Khối lập phương. C. Khối bát diện đều. D. Khối mười hai mặt đều. Câu 37. Cho hình chópS.ABCD có đáyABCD là hình vuông cạnha , mặt bên(SAB) là tam giác cân tại S và nằm trong mặt phẳng vuông góc với đáy. Biết rằng góc giữa mặt phẳng(SAD) và mặt phẳng đáy bằng450 . Tính thể tích V của khối chópS.ABCD . a3 3 a3 2 a3 a3 5 A. V = . B. V = . C. V = . D. V = . 6 3 6 6 Câu 38. Cho hình hộp chữ nhậtABCD.A 'B 'C 'D ' có diện tích các mặt (ABCD),(ABB 'A '),(ADD 'A ') lần lượt bằng20cm2,28cm2,35cm2. Tình thể tích V của khối hộp chữ nhậtABCD.A 'B 'C 'D ' . A. V = 120cm2. B.V = 160cm2. C.V = 130cm2. D. V = 140cm2. Câu 39. Tính thể tích V của khối cầu tiếp xúc với tất cả các cạnh của hình lập phương cạnh2 2. 32p 256p 64p 2 A. V = . B. V = 8p 6. C. V = . D. V = . 3 3 3 Câu 40. Trong không gian, cho tam giác ABC vuông tại A,AB = 2a,AC = a. Tính độ dài đường sinh l của hình nón, nhận được khi quay tam giác ABC xung quanh trục AB . A. l = a. B.l = a 5. C. l = a 3. D.l = 2a. Câu 41. Cho hình chóp tam giác đềuS.ABC có AB = a , cạnh bênSA tạo với đáy một góc 600 . Một hình nón có đỉnh là S , đáy là hình tròn ngoại tiếp tam giácABC . Tính diện tích xung quanh Sxq của hình nón đã cho. 4pa2 2pa2 pa2 pa2 A. S = . B. S = . C. S = . D. S = . xq 3 xq 3 xq 6 xq 2 Câu 42. Cho hình trụ có chiều caoh = 2, bán kính đáyr = 3. Một mặt phẳng(P) không vuông góc với đáy của hình trụ, làn lượt cắt hai đáy theo đoạn giao tuyến AB vàCD sao choABCD là hình vuông. Tính diện tíchS của hình vuôngABCD . A. S = 12p. B. S = 12. C. S = 20. D. S = 20p. Câu 43. Trong không gian với hệ tọa độ Oxyz, vectơ nào cho dưới đây là vectơ chỉ phương của mặt phẳng2x - y - z = 0 . 6 |
  7. TÀI LIỆU HỌC TẬP CHẤT LƯỢNGBỘ ĐỀ THI THỬ THPT QUỐC GIA NĂM 2017 r r r r A. u (1;- 2;1). B. u (1;1;2). C. u (2;- 1;- 1). D. u (1;1;1). Câu 44. Trong không gian với hệ tọa độO xyz cho điểmA(2;- 1;3 ) và mặt phẳng (a): x + y - z + 5 = 0. Phương trình tham số của đường thẳngd đi qua điểmA và vuông góc với mặt phẳng(a) là: ì ì ì ì ï x = 2 - t ï x = 2 + t ï x = 2 + t ï x = 2 - t ï ï ï ï A. d : í y = - 1- t . B. d : í y = - 1+ t . C. d : í y = - 1- t . D. d : í y = - 1+ t . ï ï ï ï ï z = 3 - t ï z = 3 - t ï z = 3 - t ï z = 3 - t îï îï îï îï Câu 45. Trong không gian với hệ tọa độO xyz, cho hai điểmA(1;- 3;2),B (3;1;2). Tọa độ các điểm I trên trục Oy thỏa mãn IA = 2IB là: A. I (0;4 + 11;0) hoặcI (0;4 - 11;0) . B. I (0;2 + 11;0) hoặcI (0;2 - 11;0) C. I (0;3 + 11;0) hoặcI (0;3 - 11;0) . D. I (0;5 + 11;0) hoặcI (0;5 - 11;0) Câu 46. Trong không gian với hệ tọa độO xyz , phương trình chứa trụcO y và điểmQ (1;4;- 3) là: A. 3y + z = 0. B. y + 3z = 0. C. 3x + z = 0. D. 3x + y = 0. ì ï x = 5 - t ï Câu 47. Trong không gian với hệ tọa độO xyz, cho hai đường thẳng d : í y = - 3 + 2t và ï ï z = 4t îï ì ï x = 9 + 2t ' ï d ' : í y = 13 + 3t ' . Khẳng định nào sau đây đúng ? ï ï z = 1- t ' îï A. Đường thẳngd vuông góc với đường thẳngd' . B. Đường thẳngd trùng với đường thẳngd' . C. Đường thẳngd tạo vớid' một góc 600 . D. Đường thẳngd song song với đường thẳngd' . Câu 48. Trong không gian với hệ tọa độO xyz, cho (P): x - 2y + 2z - 5 = 0 ,A(- 3;0;1);B (1;- 1;3) . Trong tất cả đường thẳng đi quan A song song với (P) viết phương trình đường thẳng d, biết khoảng cách từ B đến d là lớn nhất. x + 3 y z - 1 x - 1 y + 1 z - 3 A. = = . B. = = . 1 - 2 2 1 - 2 2 7 |
  8. TÀI LIỆU HỌC TẬPBỘ ĐỀ THI THỬ THPT QUỐC GIA NĂM 2017 x + 3 y z - 1 x + 3 y z - 1 C. = = . D. = = . 3 - 2 2 1 - 1 2 Câu 49. Trong không gian với hệ tọa độO xyz, cho 4 điểm A(3;- 2;- 2), B (3;2;0) ,C (0;2;1) ,D (- 1;1;2) . Phương trình mặt cầu(S) tâmA và tiếp xúc với mặt phẳng(BCD) là: 2 2 2 2 2 2 A. (x - 3) + (y + 2) + (z + 2) = 14. B. (x + 3) + (y - 2) + (z + 2) = 14. 2 2 2 2 2 2 C. (x - 3) + (y - 2) + (z + 2) = 14. D. (x + 3) + (y + 2) + (z + 2) = 14. Câu 50. Trong không gian với hệ tọa độO xyz, cho điểm I (3;6;7 ) và mặt phẳng (P): x + 2y + 2z - 11 = 0. Gọi (S) là mặt cầu tâmI và tiếp xúc với mặt phẳng(P) . Tọa độ tiếp điểm M của mặt phẳng(P) và mặt cầu(S) là: A. M (2;3;1). B. M (3;2;1). C. M (1;2;3). D. M (3;1;2). Hết 8 |
  9. TÀI LIỆU HỌC TẬP CHẤT LƯỢNGBỘ ĐỀ THI THỬ THPT QUỐC GIA NĂM 2017 BẢNG ĐÁP ÁN Câu 1 C Câu 11 A Câu 21 D Câu 31 C Câu 41 B Câu 2 D Câu 12 D Câu 22 C Câu 32 B Câu 42 C Câu 3 A Câu 13 A Câu 23 D Câu 33 B Câu 43 D Câu 4 B Câu 14 B Câu 24 A Câu 34 C Câu 44 B Câu 5 C Câu 15 A Câu 25 B Câu 35 D Câu 45 D Câu 6 D Câu 16 C Câu 26 A Câu 36 C Câu 46 C Câu 7 D Câu 17 C Câu 27 D Câu 37 C Câu 47 A Câu 8 D Câu 18 A Câu 28 D Câu 38 D Câu 48 A Câu 9 C Câu 19 B Câu 29 D Câu 39 A Câu 49 A Câu 10 B Câu 20 B Câu 30 D Câu 40 B Câu 50 C HƯỚNG DẪN GIẢI CÁC CÂU VẬN DỤNG CAO 3 Câu 8. Từ đồ thị đã cho, ta suy ra đồ thị của hàm số y = x - 3 x ( như hình bên ) Từ đó ta có kết quả thảo mãn yêu cầu bài toán - 2 0 ï m > - Khi đó x1 = 3,x2,x3 là các nghiệm của (2) với điều kiện í Û í 4 ï m ¹ 0 ï m ¹ 0 î îï 2 3 Suy ra x 2 + x 2 + x 2 = 15 Û 32 + (x + x ) - 2x x = 15 Û m = - 1 2 3 2 3 2 3 2 ïì (x + y)2 1 ï xy £ Câu 10.Đặt t = xy Þ S = f (t) = t + . Hơn nữa, do íï Þ 0 0 îï Lập bảng biến thiên của hàm số f (t),t Î (0;1] , suy ra biểu thức S không có giá trị nhỏ nhất. éx = 0 Câu 11. Tập xác định D = ¡ . Ta có: y¢= - 3x 2 + 6mx Þ y¢= 0 Û ê êx = 2m ëê 9 |
  10. TÀI LIỆU HỌC TẬPBỘ ĐỀ THI THỬ THPT QUỐC GIA NĂM 2017 3 3 Với m ¹ 0 , đồ thị (Cm ) có hai cực trị M (0;- 2m ) , N(2m;2m ) .Hệ số góc của đường thẳng MN là 1 1 k = 2m2 , đường thẳng MN vuông góc với d : y = - 2x - Û (- 2).2m2 = - 1 Û m = ± 2 2 Câu 18. Gọi M là dân số của năm lấy làm mốc tính, r là tỉ lệ tăng dân số hẳng năm. Khi đó dân số sau N năm là MeNr . Từ đó theo giả thuyết đầu bài ta có 113 = 91,70,011N Câu 26. Đặt t = x . m Câu 27.Tính tích phân (ln x + 1)dx theo tham số m, sau đó tìm m từ phương trình I = m . ò1 é êz = 3 ê Câu 33.z3 + 3z2 + 3z - 63 = 0 Û (z - 3) z2 + 6z + 21 = 0 Û êz = - 3 + 2 3i ( ) ê êz = - 3 - 2 3i ëê Câu 34. 9 9 Đặt z = x + yi (x,y Î ¡ ) nên z = 3 z - i Û x 2 + y2 = 9[x 2 + (y - 1)2 ] Û x 2 + (y - )2 = 8 64 æ ö ç 9÷ 3 Vậy tập hợp các điểm M là đường tròn tâm I ç0; ÷ bán kính R = èç 8ø÷ 8 AB a a3 Câu 37. Gọi H là trung điểm cạnh AB. Khi đó h = SH = AH = = Þ V = . 2 2 6 Câu 38. Gọi độ dài các cạnh là AB = a,BC = b,AA ' = c Þ V = abc = (ab)(bc)(ca) = 20.28.38 = 140(cm2) Câu 41. Gọi G là trọng tâm DABC , do hình chóp S.ABC là hình chóp đều nên SG ^ (ABC) a AG 2a Tính được r = AG = ,h = SG = AG tan 600 = a,l = SA = = .Vậy 3 cos600 3 2pa2 S = prl = xq 3 Câu 42. Kẻ đường sinh BB’ của hình trụ. Đặt độ dài cạnh của hình vuông ABCD là x , x > 0. ì ï CD ^ BC Do í Þ CD ^ B 'C Þ DB 'CD vuông tại C. Khi đó , B’D là ï CD ^ BB ' îï đường kính của đường Tròn (O ') . Xét DB 'CD vuông tại C Þ B 'D 2 = CD 2 + CB '2 Þ 4r 2 = x 2 + CB 2 (1) 10 |
  11. TÀI LIỆU HỌC TẬP CHẤT LƯỢNGBỘ ĐỀ THI THỬ THPT QUỐC GIA NĂM 2017 Xét tam giác DBB 'C vuông tại B Þ BC 2 = BB '2+ CB '2 Þ x 2 = h2 + CB '2 (2) 4r 2 + h2 Từ (1) và (2) Þ x 2 = = 20 , suy ra diện tích hình vuông ABCD là S = 20 . 2 Câu 48. Khoảng cách từ B đến đường thẳng d là lớn nhất nếu AB vuông góc với d. Đường thẳng d đi uuur ur ur é ù qua A và nhận vectơ pháp tuyến là êAB,nú với n là vectơ pháp tuyến của mặt phẳng (P). ë û Câu 49. Viết phương trình mặt phẳng (BCD), bán kính cầu là khoảng cách từ điểm A đến (BCD) Câu 50. Tiếp điểm là hình chiếu vuông góc của I lên mặt phẳng (P). 11 |