Đề thi Trung học phổ thông môn Toán Lớp 12 -Đề số 1 - Sở Giáo dục và Đào tạo Đồng Tháp

doc 22 trang nhatle22 3140
Bạn đang xem 20 trang mẫu của tài liệu "Đề thi Trung học phổ thông môn Toán Lớp 12 -Đề số 1 - Sở Giáo dục và Đào tạo Đồng Tháp", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_thi_trung_hoc_pho_thong_mon_toan_lop_12_de_so_1_so_giao_d.doc

Nội dung text: Đề thi Trung học phổ thông môn Toán Lớp 12 -Đề số 1 - Sở Giáo dục và Đào tạo Đồng Tháp

  1. SỞ GD & ĐT ĐỒNG THÁP KỲ THI THPT QUỐC GIA NĂM 2017 Môn: TOÁN 12 Ngày thi: ./ ./2017 Thời gian : 90’(Không kể thời gian phát đề) Câu 1. Đồ thị hàm số nào sau đây có hình dạng như hình vẽ bên y A. y x3 3x 1 B. y x3 3x 1 C. y x3 3x 1 1 D. y x3 3x 1 O x 2x 1 Câu 2. Tập xác định của hàm số y là: 3 x 1 A. D = R B. D = ;3 C. D = ; \ 3 D. D = (3; ) 2 x 2 Câu 3. Hàm số y nghịch biến trên các khoảng: x 1 A. ;1 va 1; B. 1; C. 1; D. (0; + ) 1 Câu 4. Giá trị cực đại của hàm số y x 3 x 2 3x 2 là: 3 11 5 A. B. C. 1 D. 7 3 3 x 3 Câu 5. Đường tiệm cận ngang của hàm số y là 2x 1 1 1 1 1 A. x B x C. y D. y 2 2 2 2 3x 1 Câu 6. Tìm giá trị lớn nhất của hàm số y trên đoạn 0;2 x 3 1 1 A. B. 5 C. 5 D. 3 3 x 1 Câu 7. Phương trình tiếp tuyến của hàm số y tại điểm có hoành độ bằng 3 là: x 2 A. y 3x 5 B. y 3x 13 C.y 3x 13 D. y 3x 5 Câu 8. Cho hàm số y x3 3mx2 4m3 với giá trị nào của m để hàm số có 2 điểm cực trị A và B sao cho AB 20 A. m 1 B. m 2 C. m 1;m 2 D. m 1 1 m Câu 9. Định m để hàm số y x3 2(2 m)x2 2(2 m)x 5 luôn nghịch biến khi: 3 A. 2 - 2 C. m =1 D. 2 m 3 Câu 10. Phương trình x3 12x m 2 0 có 3 nghiệm phân biệt với m. A. 16 m 16 B. 18 m 14 C. 14 m 18 D. 4 m 4 Câu 11. Một con cá hồi bơi ngược dòng để vượt một khoảng cách là 300km. Vận tốc của dòng nước là 6km / h . Nếu vận tốc bơi của cá khi nước đứng yên là v (km/h) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức: E v cv3t Trong đó c là một hằng số, E được tính bằng jun. Tìm vận tốc bơi của cá khi nước đứng yên để năng lượng tiêu hao là ít nhất. A. 6km/h B. 9km/h C. 12km/h D. 15km/h
  2. Câu 12. Đạo hàm của hàm số y 22x 3 là: 2x 3 2x 3 2x 3 2x 2 A. 2.2 .ln 2 B. 2 .ln 2 C. 2.2 D. (2 x 3)2 Câu 13. Phương trình log2 3x 2 3 có nghiệm là: 11 10 A. x B. x C. x = 3 D. x = 2 3 3 2 Câu 14. Tập nghiệm của bất phương trình log2 2x x 1 0 là: 3 3 3 1 3 A. 1; B. 0; C. ;0  ; D. ; 1  ; 2 2 2 2 10 x Câu 15. Tập xác định của hàm số y log3 là: x2 3x 2 A. 1; B. ;1  2;10 C. ;10 D. 2;10 Câu 16. Một người gửi gói tiết kiệm linh hoạt của ngân hàng cho con với số tiền là 500000000 VNĐ, lãi suất 7%/năm. Biết rằng người ấy không lấy lãi hàng năm theo định kỳ sổ tiết kiệm.Hỏi sau 18 năm, số tiền người ấy nhận về là bao nhiêu? (Biết rằng, theo định kì rút tiền hằng năm, nếu không lấy lãi thì số tiền sẽ được nhập vào thành tiền gốc và sổ tiết kiệm sẽ chuyển thành kì hạn 1 năm tiếp theo) A. 4.689.966.000 VNĐ B. 3.689.966.000 VNĐ C. 2.689.966.000 VNĐ D. 1.689.966.000 VNĐ Câu 17. Hàm số y x2 2x 2 ex có đạo hàm là: 2 x x A.y ' x e B. y ' 2xe C. y' (2x 2)ex D. Kết quả khác x 1 x 3 Câu 18. Nghiệm của bất phương trình 9 36.3 3 0 là: A. 1 x 3 B. 1 x 2 C. 1 x D. x 3 Câu 19. Nếu a log12 6, b log12 7 thì log2 7 bằng a b a a A. B. C. D. b 1 1 a b 1 a 1 2 2 Câu 20. Cho a >0, b > 0 thỏa mãn a +b =7ab . Chọn mệnh đề đúng trong các mệnh đề sau: 3 A. log(a b) (loga logb) B. 2(loga logb) log(7ab) 2 1 a b 1 C. 3log(a b) (loga logb) D. log (loga logb) 2 3 2 Câu 21. Số nghiệm của phương trình 6.9x 13.6x 6.4x 0 là: A. 2 B. 1 C. 0 D. 3 Câu 22. Không tồn tại nguyên hàm : x 2 x 1 A. dx B. x 2 2x 2dx C. sin 3xdx D. e3x dx x 1 x2 x 1 Câu 23. Nguyên hàm : dx ? x 1
  3. 2 1 1 x 2 A. x C B. 1 2 C C. ln x 1 C D. x ln x 1 C x 1 x 1 2 2 Câu 24. Tính sin 2xcosxdx 2 A. 0 B. 1 C. 1/3 D. 1/6 e Câu 25. Tính x2lnxdx 1 2e3 1 2e3 1 e3 2 e3 2 A. B. C. D. 9 9 9 9 y 3x y x Câu 26. Cho hình thang S : . Tính thể tích vật thể tròn xoay khi nó xoay quanh Ox. x 0 x 1 8 8 2 A. B. C. 8 2 D. 8 3 3 3 Câu27. Để tính I tan2 x cot2 x 2dx . Một bạn giải như sau: 6 3 3 Bước 1: I tan x cot x 2 dx Bước 2: I tan x cot x dx 6 6 3 3 cos2x Bước 3: I tan x cot x dx Bước 4: I 2 dx sin2x 6 6 3 3 Bước 5: I ln sin 2x 2ln . Bạn này làm sai từ bước nào? 6 2 A. 2 B. 3 C. 4 D. 5 a Câu 28. Tích phân f (x)dx 0 thì ta có : a A. f (x) là hàm số chẵn B. f (x) là hàm số lẻ C. f (x) không liên tục trên đoạn  a;a D. Các đáp án đều sai Câu 29. Cho số phức z = 2 + 4i. Tìm phần thực, phần ảo của số phức w = z - i A. Phần thực bằng -2 và phần ảo bằng -3i B. Phần thực bằng -2 và phần ảo bằng -3 C. Phần thực bằng 2 và phần ảo bằng 3i D. Phần thực bằng 2 và phần ảo bằng 3 Câu 30. Cho số phức z = -3 + 2i. Tính môđun của số phức z + 1 – i A. z 1 – i 4. B. z 1 – i 1. C. z 1 – i 5. D. z 1 – i 2 2. Câu 31. Cho số phức z thỏa mãn: (4 i)z 3 4i . Điểm biểu diễn của z là:
  4. 16 11 16 13 9 4 9 23 A. M ( ; ) B. M ( ; ) C. M ( ; ) D. M ( ; ) 15 15 17 17 5 5 25 25 Câu 32. Cho hai số phức: z1 2 5i; z2 3 4i . Tìm số phức z = z1.z2 A. z 6 20i B. z 26 7i C. z 6 20i D. z 26 7i 2 2 2 Câu 33. Gọi z1 và z2 là hai nghiệm phức của phương trình: z 4z 7 0 . Khi đó bằng:z1 z2 A. 10 B. 7 C. 14 D. 21 Câu 34. Trong các số phức z thỏa mãn điều kiện z 2 4i z 2i .Tìm số phức z có môđun nhỏ nhất. A. z 1 i B. z 2 2i C. z 2 2i D. z 3 2i Câu 35. Tính thể tích của khối lập phương ABCD.A’B’C’D’ biết AD’ = 2a. 2 2 A. V a3 B. V 8a3 C. V 2 2a3 D. V a3 3 Câu 36. Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc đáy và SA 2 3a . Tính thể tích V của khối chóp S.ABC 3 2a3 a3 3a3 A. V B. V C. V D. V a3 2 2 2 Câu 37. Cho tứ diện ABCD có các cạnh BA, BC, BD đôi một vuông góc với nhau: BA = 3a, BC =BD = 2a. Gọi M và N lần lượt là trung điểm của AB và AD. Tính thể tích khối chóp C.BDNM 2a3 3a3 A. V 8a3 B. V C. V D. V a3 3 2 Câu 38. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm H thuộc cạnh AB sao cho HB = 2HA. Cạnh SC tạo với mặt phẳng đáy (ABCD) một góc bằng 600 . Khoảng cách từ trung điểm K của HC đến mặt phẳng (SCD) là: a 13 a 13 a 13 A. B. C.a 13 D. 2 4 8 Câu 39. Trong không gian cho tam giác ABC vuông cân tại A, AB = AC = 2a. Tính độ dài đường sinh l của hình nón, nhận được khi quay tam giác ABC xung quanh trục AC. A. l a 2 B. l 2a 2 C. l 2a D. l a 5 Câu 40. Một công ty sản xuất một loại cốc giấy hình nón có thể tích 27cm3. Với chiều cao h và bán kính đáy là r. Tìm r để lượng giấy tiêu thụ ít nhất. 36 38 38 36 A.r 4 B. r 6 C. r 4 D. r 6 2 2 2 2 2 2 2 2 Câu 41. Trong không gian cho hình chữ nhật ABCD có AB = 4 và BC = 2. Gọi P, Q lần lượt là các điểm trên cạnh AB và CD sao cho: BP = 1, QD = 3QC. Quay hình chữ nhật APQD xung quanh trục PQ ta được một hình trụ. Tính diện tích xung quanh của hình trụ đó. A. 10 B.12 C. 4 D. 6 Câu 42. Cho tứ diện đều ABCD có cạnh bằng a. Thể tích của khối cầu tiếp xúc với tất cả các cạnh của tứ diện ABCD bằng: 3 a3 2 a3 2 2a3 3a3 A. B. C. D. 8 24 9 24 Câu 43. Trong không gian Oxyz, cho tứ diện ABCD với A 1;6;2 ;B 5;1;3 ; C 4;0;6 ; D 5;0;4 .Viết phương trình mặt cầu S có tâm D và tiếp xúc với mặt phẳng ABC là:
  5. 2 2 8 2 2 4 A. S : x 5 y2 z 4 B. S : x 5 y2 z 4 223 223 2 2 16 2 2 8 C. S : x 5 y2 z 4 D. S : x 5 y2 z 4 223 223 Câu 44. Mặt phẳng P song song với mặt phẳng Q :x 2y z 0 và cách D 1;0;3 một khoảng bằng 6 thì (P) c ó phương trình là: x 2y z 2 0 x 2y z 10 0 A. B. C. x 2y z 2 0 x 2y z 2 0 x 2y z 2 0 x 2y z 2 0 D. x 2y z 10 0 x 2y z 10 0 Câu 45. Cho hai điểm A 1; 1;5 ;B 0;0;1 . Mặt phẳng (P) chứa A, B và song song với Oy có phương trình là: A. 4x y z 1 0 B. 2x z 5 0 C. 4x z 1 0 D. y 4z 1 0 Câu 46. Cho hai điểm A 1; 2;0 ;B 4;1;1 . Độ dài đường cao OH của tam giác OAB là: 1 86 19 19 A. B. C. D. 19 19 86 2 Câu 47. Mặt cầu S có tâm I 1;2; 3 và đi qua A 1;0;4 có phương trình: 2 2 2 2 2 2 A. x 1 y 2 z 3 5 B. x 1 y 2 z 3 5 2 2 2 2 2 2 C. x 1 y 2 z 3 53 D. x 1 y 2 z 3 53 Câu 48. Trong không gian Oxyz, cho hai mặt phẳng P :nx 7y 6z 4 0; Q :3x my 2z 7 0 song song với nhau. Khi đó, giá trị m,n thỏa mãn là: 7 7 3 7 A. m ;n 1 B. m 9;n C. m ;n 9 D. m ;n 9 3 3 7 3 Câu 49. Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;4;1), B(–1;1;3) và mặt phẳng P : x – 3y 2z – 5 0 . Viết phương trình mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với mặt phẳng (P). A. 2y 3z 11 0 B. y 2z 1 0 C. 2y 3z 11 0 D. 2x 3y 11 0 Câu 50. Trong không gian Oxyz cho các điểm A 3; 4;0 ;B 0;2;4 ;C 4;2;1 . Tọa độ diểm D trên trục Ox sao cho AD = BC là: A. D(0;0;0) hoặc D(6;0;0) B. D(0;0;2) hoặc D(8;0;0) C. D(2;0;0) hoặc D(6;0;0) D. D(0;0;0) hoặc D(-6;0;0)
  6. ĐÁP ÁN Câu 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 B C A A D D C A D C B A B C B D A B B D A B C A A Câu 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 A B B D C B B C C C B C D B B B B D D C B D D A A MA TRẬN ĐỀ Nội dung chủ Mức độ Số câu đề Nhận biết Thông hiểu Vận dụng Vận dụng cao Điểm Hàm số và bài C1,C2,C5 C3,C4 C6,C7,C10 C8,C9,C11 11 toán liên quan đến hàm số, đồ 0,6 0,4 0,6 0,6 2,2 thị. Từ câu 1 đến câu 11 ũ – Lôgarit C12 C13,C17 C14,C15,C18,C19 C16 10 Từ câu 12 đến C20,C21 câu 21 0,2 0,4 1,2 0,2 2,0 Tích phân và C22,C24,C28 C23,C25,C26 C27 7 ứng dụng Từ câu 22 đến 0,6 0,6 0,2 1,4 câu 28 Số phức C29 C30,C32 C31,C33,C34 6 Từ câu 29 đến câu 34 0,2 0,4 0,6 1,2 Thể tích và C35,C39,C40,C41 C36,C42 C37,C38 8 khoảng cách Từ câu 35 đến 0,8 0,4 0,4 1,6 câu 42 PP tọa độ C43 C47,C48 C44,C45,C46,C49 8 trong không C50 gian 0,2 0,4 1,0 1,6 Từ câu 43 đến câu 50 Số câu 6 15 22 7 50 Điểm 1,2 3,0 4,4 1,4 10 HƯỚNG DẪN Câu 1: Dựa và đồ thị ta thấy hàm số đồng biến trên R và cắt trục hoành tại 1 điểm nên chon đáp án B. 1 Câu 2: Tập xác định của hàm số là: D ; \ 3 2 3 y ' Câu 3: x 1 2 ;1 va 1; chọn đáp án A hàm số nghịch biến trên khoảng 1 Câu 4: Giá trị cực đại của hàm số y x 3 x 2 3x 2 là: 3
  7. 11 5 A. B. C. 1 D. 7 3 3 ' 2 ' x 1 11 Ta có: y x 2x 3 y 0 yCD y 1 Chọn đáp án A x 3 3 x 3 Câu 5: Đường tiệm cận ngang của hàm số y là 2x 1 1 1 1 1 A. x B x C. y D. y Đáp án D 2 2 2 2 3x 1 Câu 6: Tìm giá trị lớn nhất của hàm số y trên đoạn 0;2 x 3 đoạn 0;2 . Ta có: Hàm số liên tục trên 8 y ' x 1 2 ;3 và 3; hàm số nghịch biến trên x 1 Câu 7: Phương trình tiếp tuyến của hàm số y tại điểm có hoành độ bằng 3 là: x 2 A. y 3x 5 B. y 3x 13 C.y 3x 13 D. y 3x 5 Giải: y(- 3) = 4. Phương trình tiếp tuyến tại điểm có hoành độ bằng -3 là: y – 4 = 3(x + 3) hay y = 3x + 13. chọn đáp án C Câu 8: Cho hàm số y x3 3mx2 4m3 với giá trị nào của m để hàm số có 2 điểm cực trị A và B sao cho AB 20 Giải: Ta có y' 3x2 6mx Đkiện để hàm số có hai cục trị là: m 0 3 ' x1 0 y1 4m 3 y 0 A 0;4m ;B 2m;0 x2 2m y2 0 Mà AB 20 4m6 m2 5 0 Chọn đáp án A m 1 1 m Câu 9: Định m để hàm số y x3 2(2 m)x2 2(2 m)x 5 luôn nghịch biến khi: 3 A. 2 - 2 C. m =1 D. 2 m 3 Giải: y' 1 m x2 4 2 m x 2 2 m TH1: m = 1 thì y' 4x 4 . Với m = 1 thì hàm số không nghịch biens trên TXĐ 1 m 0 m 1 2 m 3 TH2: m 1 để hàm số luôn nghịch biến thì điều kiện là: ' 2 . 0 m 5m 6 0 Chọn đáp án D Câu 10: Phương trình x3 12x m 2 0 có 3 nghiệm phân biệt với m. A. 16 m 16 B. 18 m 14 C. 14 m 18 D. 4 m 4 Giải: Xét hàm số y x3 12x y' 3x2 12 ' x 2 yCT 16 y 0 x 2 yCD 16 Xét đường thẳng y = 2 - m. Để PT có 3 nghiệm phân biệt thì đK là
  8. 16 2 m 16 14 m 18 Chọn đáp án C Câu 11: Một con cá hồi bơi ngược dòng để vượt một khoảng cách là 300km. Vận tốc của dòng nước là 6km / h . Nếu vận tốc bơi của cá khi nước đứng yên là v (km/h) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức. E v cv3t Trong đó c là một hằng số, E được tính bằng jun. Tìm vận tốc bơi của cá khi nước đứng yên để năng lượng tiêu hao là ít nhất. A. 6km/h B. 9km/h A. 12km/h A. 15km/h Giải: Vận tốc của cá bơi khi ngược dòng là: v- 6 ( km/ h). 300 Thời gian để cá bơi vượt khoảng cách 300km là t v 6 Năng lượng tiêu hao của cá để vượt khoảng cách đó là: 300 v3 E v cv3. 300c. jun , v 6 v 6 v 6 v 9 E' v 600cv2 v 6 2 ' v 0 loai E v 0 v 9 V 6 9 E' v - + E(v) Chọn đáp án B E(9) Câu 12: Đạo hàm của hàm số y 22x 3 là: 2x 3 2x 3 2x 3 2x 2 A. 2.2 .ln 2 B. 2 .ln 2 C. 2.2 D. (2 x 3)2 Câu 13: Phương trình log2 3x 2 3 có nghiệm là: 11 10 A. x B. x C. x = 3 D. x = 2 3 3 2 Câu 14: Tập nghiệm của bất phương trình log2 2x x 1 0 là: 3 3 3 1 3 A. 1; B. 0; C. ;0  ; D. ; 1  ; 2 2 2 2 10 x Câu 15: Tập xác định của hàm số y log là: 3 x2 3x 2 A. 1; B. ;10 C. ;1  2;10 D. 2;10 Câu 16: Một người gửi gói tiết kiệm linh hoạt của ngân hàng cho con với số tiền là 500000000 VNĐ, lãi suất 7%/năm. Biết rằng người ấy không lấy lãi hàng năm theo định kỳ sổ tiết kiệm.Hỏi sau 18 năm, số tiền người ấy nhận về là bao nhiêu? (Biết rằng, theo định kì rút tiền hằng năm, nếu không lấy lãi thì số tiền sẽ được nhập vào thành tiền gốc và sổ tiết kiệm sẽ chuyển thành kì hạn 1 năm tiếp theo) A. 4.689.966.000 VNĐ B. 3.689.966.000 VNĐ
  9. C. 2.689.966.000 VNĐ D. 1.689.966.000 VNĐ Giải: Gọi a là số tiền gửi vào hàng tháng gửi vào ngân hàng x là lãi suất ngân hàng n là số năm gửi Ta có Sau năm 1 thì số tiền là : a ax a x 1 2 Sau năm 2: a x 1 a x 1 x a x 1 x 1 a x 1 2 2 2 3 Sau năm 3 : a x 1 a x 1 x a x 1 x 1 a x 1 3 3 3 4 Sau năm 4: a x 1 a x 1 x a x 1 x 1 a x 1 n Sau n năm ,số tiền cả gốc lẫn lãi là : a x 1 18 Vậy sau 18 năm, số tiền người ý nhận được là: 500.000.000 0,07 1 1,689,966,000 VNĐ Câu 17: Hàm số y x2 2x 2 ex có đạo hàm là: 2 x x A.y' x e B. y' 2xe C. y' (2x 2)ex D. Kết quả khác Câu 18: Nghiệm của bất phương trình 9x 1 36.3x 3 3 0 là: A. 1 x 3 B. 1 x 2 C. 1 x D. x 3 Câu 19: Nếu a log12 6,b log12 7 thì log2 7 bằng a b a a A. B. C. D. b 1 1 a b 1 a 1 Câu 20: Cho a >0, b > 0 thỏa mãn a2 b2 7ab . Chọn mệnh đề đúng trong các mệnh đề sau: 3 A. log(a b) (loga logb) B. 2(loga + logb) = log(7ab) 2 1 a b 1 C. 3log(a b) (loga logb) D. log (loga logb) 2 3 2 Câu 21: Số nghiệm của phương trình 6.9x 13.6x 6.4x 0 là: A. 2 B. 1 C. 0 D. 3 Câu 22: Không tồn tại nguyên hàm : x2 x 1 dx x2 2x 2dx sin 3xdx e3x xdx A. x 1 B. C. D. Giải: Ta có: x2 2x 2 0 x ¡ Vậy không tồn tại x2 2x 2 nên không nguyên hàm x2 2x 2dx x2 x 1 Mặt khác:biểu thức : có nghĩa  x ≠ 1, biểu thức: sin 3x ; e3x x có nghĩa  x x 1 Trả lời: Đáp án B x2 x 1 Câu 23: Nguyên hàm : dx ? x 1 2 1 1 x 2 A. x C B. 1 2 C C. ln x 1 C D. x ln x 1 C x 1 x 1 2
  10. x2 x 1 1 x2 Giải: dx x dx ln x 1 C x 1 x 1 2 Trả lời: Đáp án C 2 Câu 24: Tính sin 2xcosxdx : A. 0 B. 1 C. 1/3 D. 1/6 2 a Giải: Từ tính chất: f(x) là hàm số lẻ và xác định trên đoạn: [-a;a] thì f x dx 0 a 2 2 Do hàm số: f x 2sin x.cos2 x lẻ nên ta có sin 2x cos xdx 2sin x.cos2 xdx 0 2 2 Trả lời: Đáp án A e 2e3 1 2e3 1 e3 2 e3 2 Câu 25: Tính x2lnxdx : A. B. C. D. 1 9 9 9 9 u ln x dx x3 Giải: đặt du ; v 2 dv x dx x 3 e e 3 e 3 2 x 1 2 2e 1 Ta có: x ln xdx ln x x dx 3 3 9 1 1 1 Trả lời: Đáp án A y 3x y x Câu 26: Cho hình thang S : . Tính thể tích vật thể tròn xoay khi nó xoay quanh Ox. x 0 x 1 8 8 2 A. B. C. 8 2 D. 8 3 3 Giải: Xét hình thang giới hạn bởi các đường: y 3x; y x; x 0; x 1 1 1 2 2 8 Ta có: V 3x dx x dx 0 0 3 Trả lời: Đáp án A 3 Câu27: Để tính I tan2 x cot2 x 2dx . Một bạn giải như sau: 6 3 3 Bước 1: I tan x cot x 2 dx Bước 2: I tan x cot x dx 6 6
  11. 3 3 cos2x Bước 3: I tan x cot x dx Bước 4: I 2 dx sin2x 6 6 3 3 Bước 5: I ln sin 2x 2ln . Bạn này làm sai từ bước nào? 6 2 A. 2 B. 3 C. 4 D. 5 Giải: 3 3 3 I tan2 x cot2 x 2dx tan x cot x 2 dx tan x cot x dx 6 6 6 4 3 4 cos2x 3 cos2x tan x cot x dx tan x cot x dx 2 dx 2 dx sin2x sin2x 6 4 6 4 4 3 3 ln sin 2x ln sin 2x 2ln 6 4 2 Trả lời: Đáp án B a Câu 28: Tích phân f (x)dx 0 thì ta có : a A ) f (x) là hàm số chẵn B) f (x) là hàm số lẻ C) f (x) không liên tục trên đoạn  a;a D) Các đáp án đều sai a 0 a Giải : Xét tích phân : I f (x)dx f (x)dx f (x)dx a a 0 0 a a a a a Đặt : x = - t ta có : I f t dt f (x)dx f t dt f (x)dx f x dx f (x)dx a 0 0 0 0 0 a Nếu f (x) là hàm số chẵn ta có : f ( x) f (x) I 2 f (x)dx 0 Nếu f (x) là hàm số lẻ ta có : f ( x) f (x) I 0 Trả lời : Đáp án B Câu 29: Cho số phức z = 2 + 4i. Tìm phần thực, phần ảo của số phức w = z - i A. Phần thực bằng -2 và phần ảo bằng -3i B. Phần thực bằng -2 và phần ảo bằng -3 C. Phần thực bằng 2 và phần ảo bằng 3i D. Phần thực bằng 2 và phần ảo bằng 3 BG: w = z – i = 2 + 3i => Phần thực bằng 2 và phần ảo bằng 3 Câu 30: Cho số phức z = -3 + 2i. Tính môđun của số phức z + 1 – i A. z 1 – i 4. B. z 1 – i 1. C. z 1 – i 5. D. z 1 – i 2 2. BG: z + 1 – i = -2 – i => z 1 – i 5. Câu 31: Cho số phức z thỏa mãn: (4 i)z 3 4i . Điểm biểu diễn của z là: 16 11 16 13 9 4 9 23 A. M ( ; ) B. M ( ; ) C. M ( ; ) D. M ( ; ) 15 15 17 17 5 5 25 25
  12. 3 4i 16 13 16 13 BG: Ta có (4 i)z 3 4i z i =>M ( ; ) 4 i 17 17 17 17 Câu 32: Cho hai số phức: z1 2 5i; z2 3 4i . Tìm số phức z = z1.z2 (sửa đề: w->z) A. z 6 20i B. z 26 7i C. z 6 20i D. z 26 7i BG: Ta có z = z1.z2 = 26+7i 2 2 2 Câu 33: Gọi z1 và z2 là hai nghiệm phức của phương trình: z 4z 7 0 . Khi đó bằng:z1 z2 A. 10 B. 7 C. 14 D. 21 2 2 2 BG: z 4z 7 0 => z1,2 2 3i =>z1 z2 =14 Câu 34: Trong các số phức z thỏa mãn điều kiện z 2 4i z 2i .Tìm số phức z có môđun nhỏ nhất. A. z 1 i B. z 2 2i C. z 2 2i D. z 3 2i BG: Giả sử z = x + yi ta có: z 2 4i z 2i x y 4 z x2 y2 => z = 2 + 2i 2(x 2)2 8 2 2 Câu 35: Tính thể tích của khối lập phương ABCD.A’B’C’D’ biết AD’ = 2a. 2 2 A. V a3 B. V 8a3 C. V 2 2a3 D. V a3 3 BG: Gọi x là cạnh của hlp => AD' x 2 2a x a 2 => V 2 2a3 Câu 36: Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, cạnh bên SA vuông góc đáy và SA 2 3a . Tính thể tích V của khối chóp S.ABC 3 2a3 a3 3a3 A. V B. V C. V D. V a3 2 2 2 a2 3 a3 BG: Ta có S ; h SA 2 3a => V day 4 2 Câu 37: Cho tứ diện ABCD có các cạnh BA, BC, BD đôi một vuông góc với nhau: BA = 3a, BC =BD = 2a. Gọi M và N lần lượt là trung điểm của AB và AD. Tính thể tích khối chóp C.BDNM 2a3 3a3 A. V 8a3 B. V C. V D. V a3 3 2 3a (2a a). 2 2 3 9a 1 9a 3a BG: Ta có S 2 ; BC 2a => V . .2a MNBD 2 4 3 4 2 Câu 38: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hình chiếu vuông góc của S lên mặt phẳng (ABCD) là điểm H thuộc cạnh AB sao cho HB = 2HA. Cạnh SC tạo với mặt phẳng đáy (ABCD) một góc bằng 600 . Khoảng cách từ trung điểm K của HC đến mặt phẳng (SCD) là: a 13 a 13 a 13 A. B. C.a 13 D. 2 4 8
  13. a 13 BG: Ta có HC 3 a 13 a 39 => SH HC.tan 600 . 3 ; 3 3 Gọi I là trung điểm của CD(HI a ), kẻ HP vuông góc với SI ta có khoảng cách từ H đến mp(SCD) chính bằng HP. Theo hệ thực lượng trong tam giác vuông ta có: 1 1 1 a 13 1 a 13 => HP d(K;(SCD)) d(H;(SCD)) HP2 HI 2 SH 2 4 2 8 Câu 39: Trong không gian cho tam giác ABC vuông cân tại A, AB = AC = 2a. Tính độ dài đường sinh l của hình nón, nhận được khi quay tam giác ABC xung quanh trục AC. A. l a 2 B. l 2a 2 C. l 2a D. l a 5 BG: Ta có l BC (2a)2 (2a)2 2a 2 Câu 40: Một công ty sản xuất một loại cốc giấy hình nón có thể tích 27cm3. Vói chiều cao h và bán kính đáy là r. Tìm r để lượng giấy tiêu thụ ít nhất. 36 38 38 36 A.r 4 B. r 6 C. r 4 D. r 6 2 2 2 2 2 2 2 2 1 3V BG: Ta có: V r 2h h => độ dài đường sinh là: 3 r 2 3V 81 38 l h2 r 2 ( )2 r 2 ( )2 r 2 r 2 r 2 r 2 2r 4 38 38 Diện tích xung quanh của hình nòn là: S rl r r 2 r 4 xq 2r 4 2r 2 38 Aps dungj BDDT Cosi ta được giá trị nhỏ nhất là khi r 6 . 2 2 Câu 41: Trong không gian cho hình chữ nhật ABCD có AB = 4 và BC = 2. Gọi P, Q lần lượt là các điểm trên cạnh AB và CD sao cho: BP = 1, QD = 3QC. Quay hình chữ nhật APQD xung quanh trục PQ ta được một hình trụ. Tính diện tích xung quanh của hình trụ đó. A. 10 B.12 C. 4 D. 6 BG: Ta có AP = 3, AD = 2 Khi quay hcn APQD xung quanh trục PQ ta được hình trụ có bán kính đáy r = 3 và đường sinh l = 2. Diện tích xung quanh Sxq 2 .r.l 2 .3.2 12 Câu 42: Cho tứ diện đều ABCD có cạnh bằng a. Thể tích của khối cầu tiếp xúc với tất cả các cạnh của tứ diện ABCD bằng: 2a3 3a3 2 2a3 3a3 A. B. C. D. 24 8 9 24 a 2 BG: Gọi M, N lần lượt là trung điểm của AB và CD. Ta có MN AN 2 AM 2 2
  14. MN a 2 2 a3 => Bán kính khối cầu là: r => Thể tích khối cầu là: V . 2 4 24 Câu 1: Trong không gian Oxyz, cho tứ diện ABCD với A 1;6;2 ;B 5;1;3 ; C 4;0;6 ; D 5;0;4 .Viết phương trình mặt cầu S có tâm D và tiếp xúc với mặt phẳng ABC là: 2 2 8 2 2 4 A. S : x 5 y2 z 4 B. S : x 5 y2 z 4 223 223 2 2 16 2 2 8 C. S : x 5 y2 z 4 D. S : x 5 y2 z 4 223 223 Đáp án: D Ta có:   AB 4; 5;1 ; AC 3; 6;4 n ABC 14;13;9 Phương trình mặt phẳng (ABC) là: 14 x 13y 9z 110 0 14.5 13.0 9.4 110 4 R d D; ABC 142 132 92 446 2 2 8 Vậy phương trình mặt cầu là: S : x 5 y2 z 4 223 Câu 2 : Mặt phẳng P song song với mặt phẳng Q :x 2y z 0 và cách D 1;0;3 một khoảng bằng 6 có phương trình là: x 2y z 2 0 x 2y z 10 0 A. B. x 2y z 2 0 x 2y z 2 0 x 2y z 2 0 x 2y z 2 0 C. D. x 2y z 10 0 x 2y z 10 0 Đáp án : D Ta có: Mặt phẳng (P) có dạng x 2y z D 0 1.1 2.0 1.3 D D 2 Vì d D; P 6 4 D 6 12 22 11 D 10 Câu 3: Cho hai điểm A 1; 1;5 ;B 0;0;1 . Mặt phẳng (P) chứa A, B và song song với Oy có phương trình là: A. 4x y z 1 0 B. 2x z 5 0 C. 4x z 1 0 D. y 4z 1 0 Đáp án : C   Ta có: AB 1;1; 4 ,đường thẳng Oy có ud 0;1;0 n(P) 4;0; 1 Phương trình mặt phẳng (P) là: 4x z 1 0 Câu 4: . Cho hai điểm A 1; 2;0 ;B 4;1;1 . Độ dài đường cao OH của tam giác OAB là: 1 86 19 19 A. B. C. D. 19 19 86 2 Đáp án: B
  15. x 1 3t   Ta có: AB 3;3;1 . PTĐT AB là : y 2 3t H 1 3t; 2 3t;t OH 1 3t; 2 3t;t z t   3 Vì OH  AB 3. 1 3t 3 2 3t t 0 t 19 2 2 2  28 29 3 86 OH 19 19 19 19 Câu 5: Mặt cầu S có tâm I 1;2; 3 và đi qua A 1;0;4 có phương trình: 2 2 2 2 2 2 A. x 1 y 2 z 3 5 B. x 1 y 2 z 3 5 2 2 2 2 2 2 C. x 1 y 2 z 3 53 D. x 1 y 2 z 3 53 Đáp án: D Ta có: AI 0; 2;7 R AI 53 2 2 2 Vậy PT mặt cầu là: x 1 y 2 z 3 53 Câu 6: Trong không gian Oxyz, cho hai mặt phẳng P :nx 7y 6z 4 0; Q :3x my 2z 7 0 song song với nhau. Khi đó, giá trị m,n thỏa mãn là: 7 7 3 7 A. m ;n 1 B. m 9;n C. m ;n 9 D. m ;n 9 3 3 7 3 Đáp án: D 7 n 7 6 m Để (P) // (Q) thì ta có : 3 3 m 2 n 9 Câu 7: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;4;1), B(–1;1;3) và mặt phẳng P : x – 3y 2z – 5 0 . Viết phương trình mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với mặt phẳng (P). A. 2y 3z 11 0 B. y 2z 1 0 C. 2y 3z 11 0 D. 2x 3y 11 0 Đáp án: A Ta có: AB 3; 3;2   P  Q n P u Q 1; 3;2 Vì  n Q 0;2;3 Vậy , PT mặt phẳng (P) là 2y 3z 11 0 Câu 8: Trong không gian Oxyz cho các điểm A 3; 4;0 ;B 0;2;4 ;C 4;2;1 . Tọa độ diểm D trên trục Ox sao cho AD = BC là: A. D 0;0;0  D 6;0;0 B. D 0;0;2  D 0;0;8 C. D 0;0; 3  D 0;0;3 D. D 0;0;0  D 0;0; 6 Đáp án: A Gọi D x;0;0
  16.   2 2 2 AD x 3;4;0 AD x 3 4 0 x 0 Ta có:   x 6 BC 4;0; 3 BC 5 ĐỀ 2 GV : Trần Minh Tú SỞ GD&ĐT ĐỒNG THÁP ĐỀ THI THỬ THPT QUỐC GIA NĂM 2017 TRƯỜNG THPT CHÂU THÀNH 2 Thời gian làm bài: 90 phút Họ, tên thí sinh: . Điểm Lớp: . PHƯƠNG ÁN TRẢ LỜI 1 2 3 4 5 6 7 8 9 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 C A D B B B A D D C D A D C C D A D A A B A B D A 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 D B D B C B A A A B D C C D D D A A C D D C A D D y Câu 1. Đường cong hình bên là đồ thị hàm số nào trong 4 hàm số sau: 2 x -2 -1 O 1 2 -2
  17. 4 x 3 A. y 2x2 2 B. y x 5 x 2 2 4 3 x C. y x 3x2 2 D. y x2 2 4 Câu 2. Phương trình x3 - 3x = m2 + m có 3 nghiệm phân biệt khi: m 2 A. −2 =12 B. m>=0 C. m<=12 D. m<=0 Câu 8. Tập hợp các số phức z thoả mãn đẳng thức |z + 2 + i| = | z - 3i| có phương trình là: A. y = x + 1 B. y = - x + 1 C.y = -x – 1 D. y = x - 1 Câu 9. Hình chiếu vuông góc của điểm A(0;1;2) trên mặt phẳng (P) : x + y + z = 0 có tọa độ là: A. (–2;2;0) B. (–2;0;2) C. (–1;1;0) D. (–1;0;1)
  18. Câu 10. Thể tích khối tròn xoay khi quanh hình phẳng giới hạn bởi các đường y = x2 – x + 2 và y = 2x quanh trục Ox là: 2 2 2 2 2 2 2 A. (x 3x 2) dx B. (x x 2) 4x dx 1 1 2 2 2 2 2 2 2 2 C. 4x (x x 2) dx D. (x x 2) 4x dx 1 1 x2 mx 2 Câu 11. Đồ thị hàm số y có các điểm cực đại, cực tiểu có hoành độ dương khi m thỏa mãn: mx 1 A. m > 2 B. 0 < m < 2 C. –2 < m < 0 D. 0 < m < 1 Câu 12. Phương trình log2 (3x 2) 3 có nghiệm là: 10 16 8 11 A. x = B. x = C. x = D. x = 3 3 3 3 3 2 2 Câu 13. Giá trị của m để hàm số fđạt(x )cực xtiểu tại3x 3(m là :1)x x0 2 A. m 1 B. m 1 C. m 1 D. m 1 Câu 14. Hàm số y = (m - 1)x4 + (m2 - 2m)x2 +m2 có ba điểm cực trị khi giá trị của m là: m 2 m 2 m 0 m 1 A. B. C. D. 0 m 1 1 m 1 1 m 2 1 m 2 x 1 y z 1 Câu 15. Mặt phẳng (P) chứa đường thẳng d: và vuông góc với mặt phẳng 2 1 3 (Q) : 2x y z 0 có phương trình là: A. x + 2y – 1 = 0 B. x − 2y + z = 0 C. x − 2y – 1 = 0 D. x + 2y + z = 0 2 Câu 16. Tích phân I = x2 ln xdx có giá trị bằng: 1 7 8 7 8 7 A. 8 ln2 - B. 24 ln2 – 7 C. ln2 - D. ln2 - 3 3 3 3 9 Câu 17. Nguyên hàm của hàm số f(x) = x.e2x là: 1 2x 1 2x 1 A. F(x) = e x C B. F(x) = 2e x C 2 2 2 1 C. F(x) = 2e2x x 2 C D. F(x) = e2x x 2 C 2 x2 x 1 Câu 18. Số tiệm cận của đồ thị hàm số y là: x 1 A. 1 B. 2 C. 4 D. 3
  19. 2 2 Câu 19. Phương trình 4x x 2x x 1 3 có nghiệm là: x 0 x 1 x 0 x 1 A. B. C. D. x 1 x 2 x 2 x 1 2 5x 7 Câu 20. Tích phân I = dx có giá trị bằng: 2 0 x 3x 2 A. 2ln3 + 3ln2 B. 2ln2 + 3ln3 C. 2ln2 + ln3 D.2ln3 + ln4 2 Câu 21. Bất phương trình 0,3x x 0,09 có nghiệm là: x 2 A. B. -2 1 x 1 Câu 22. Hình chóp tứ giác S.ABCD có đáy là hình chữ nhật cạnh AB = a, AD = a2 ; SA  (ABCD), góc giữa SC và đáy bằng 60o. Thể tích hình chóp S.ABCD bằng: A. 2a3 B. 3a3 C. 6a3 D.3 2a3 Câu 23. Hình chóp tứ giác S.ABCD có đáy là hình chữ nhật cạnh AB = 4a, AD = 3a; các cạnh bên đều có độ dài bằng 5a. Thể tích hình chóp S.ABCD bằng: 9a3 3 10a3 A. 9a3 3 B. 10a3 3 C. D. 2 3 V Câu 24. Cho tứ diện MNPQ. Gọi I; J; K lần lượt là trung điểm của các cạnh MN; MP; MQ. Tỉ số thể tích MIJK VMNPQ bằng: 1 1 1 1 A. B. C. D. 3 4 6 8 Câu 25.Cho số phức z = (2 + i)(1 − i) + 1 + 3i . Môđun của z là: A. 25 B. 22 C. 13 D. 42 Câu 26. Khoảng cách từ điểm M(1;2;−3) đến mặt phẳng (P) : x + 2y - 2z - 2 = 0 bằng: 11 1 A. 1 B . C. D. 3 3 3 x y 1 z 1 x 1 y z 3 Câu 27. Góc giữa hai đường thẳng d : và d : bằng 1 1 1 2 2 1 1 1 A. 45o B. 90o C. 60o D. 30o
  20. Câu 28. Hàm số y = x3 – 5x2 + 3x + 1 đạt cực trị khi: x 0 x 3 x 0 x 3 A. 10 B. 1 C. 10 D. 1 x x x x 3 3 3 3 Câu 29. Cho hình lập phương MNPQ.M’N’P’Q’ có cạnh bằng 1. Thể tích khối tứ diện MPN’Q’ bằng: 1 1 1 1 A. B. C. D. 2 3 4 6 Câu 30. Phương trình các tiếp tuyến của đồ thị hàm số y = x3 - 2x2 + x đi qua điểm M(1;0) là: y x 1 y 0 y 0 y x 1 A. 1 1 B. 1 1 C. 1 1 D. 1 1 y x y x y x y x 4 4 4 4 4 4 4 4 Câu 31. Lăng trụ tam giác đều ABC.A’B’C’ có góc giữa hai mặt phẳng (A’BC) và (ABC) bằng 60 o; cạnh AB = a. Thể tích khối đa diện ABCC’B’ bằng: 3a3 3 3a3 3a3 A. B. C. D. 3a3 4 8 4 Câu 32. Hàm số y = x3 - 3mx2 +6mx +m có hai điểm cực trị khi giá trị của m là: m 0 m 0 A. B. 0 < m < 2 C. 0 < m < 8 D. m 2 m 8 Câu 33. Hàm số nào sau đây đồng biến trên R ? x x A. y PB. y tgx C. y D. y (x2 1)2 3x 2 x2 1 x 1 Câu 34. Giá trị của m để phương trình x 2x2 1 m có nghiệm là: 2 2 2 2 A. m B. m C. m D. m 2 2 2 2 Câu 35. Hình chóp tứ giác S.ABCD có đáy là hình vuông cạnh a; SA  (ABCD); góc giữa hai mặt phẳng (SBD) và (ABCD) bằng 60o. Gọi M, N lần lượt là trung điểm của SB, SC. Thể tích của hình chóp S.ADNM bằng: a3 3a3 3 3a3 6a3 A. B. C. D. 4 6 8 2 8 2 8 Câu 36. Cho số phức z thỏa mãn đẳng thức z + (1 + i)z = 5 + 2i . Môđun của z là: A. 10 B.2 C. 22 D. 5
  21.  Câu 37. Ba véc tơ u , v , w thoả mãn mỗi véc tơ cùng phương với tích có hướng của hai véc tơ còn lại là:   A. u (–1; 2; 7) , v (–3; 2; –1) , w (12; 6; –3). B. u (4; 2; –3) , v (6; – 4; 8) , w (2; – 4; 4)   C. u (–1; 2; 1) , v (3; 2; –1) , w (–2; 1; – 4) D. u (–2; 5; 1) , v (4; 2; 2) , w (3; 2; – 4)  Câu 38. Ba véc tơ u , v , w thoả mãn mỗi véc tơ biểu diễn được theo hai véc tơ còn lại là:   A. u (–1; 3; 2) , v (4; 5; 7) , w (6; –2; 1) B. u (– 4; 4; 1) , v (2; 6; 2) , w (3; 0; 9)   C.u ( 2; –1; 3) , v (3; 4; 6) , w (–4; 2; – 6) D. u (0; 2; 4) , v (1; 3; 6) , w (4; 0; 5) Câu 39. Hai mặt phẳng (P) và (Q) có giao tuyến cắt trục Ox là: A. (P): 4x – 2y + 5z – 1 = 0 và (Q): 2x – y + 3z – 2 = 0 B. (P): 3x – y + z – 2 = 0 và (Q): x + y + z + 1 = 0 C. (P): x – y – 3z + 3 = 0 và (Q): 4x – y + 2z – 3 = 0 D. (P): 5x + 7y – 4z + 5 = 0 và (Q): x – 3y + 2z + 1 = 0 Câu 40. Mặt phẳng cắt mặt cầu (S) : x2 + y2 + z2 – 2x + 2y + 6z –1 = 0 có phương trình là: A. 2x + 3y –z – 16 = 0 B. 2x + 3y –z + 12 = 0 C. 2x + 3y –z – 18 = 0 D. 2x + 3y –z + 10 = 0 Câu 41. Cho điểm M(–3; 2; 4), gọi A, B, C lần lượt là hình chiếu của M trên Ox, Oy, Oz. Mặt phẳng song song với mp(ABC) có phương trình là: A. 4x – 6y –3z + 12 = 0 B. 3x – 6y –4z + 12 = 0 C. 6x – 4y –3z – 12 = 0 D. 4x – 6y –3z – 12 = 0 Câu 42. Côsin của góc giữa Oy và mặt phẳng (P): 4x – 3y + 2 z – 7 = 0 là: 2 1 2 4 A. B. C. D. 3 3 3 3 1 Câu 43. Hàm số y = x2 3x 2 A. Đồng biến trên khoảng (– ; 1) B. Đồng biến trên khoảng (2; + ) C. Nghịch biến trên khoảng (1,5; + ) D. Đồng biến trên khoảng (– ; 1,5) Câu 44. Hàm số y = cos2x – 2cosx + 2 có giá trị nhỏ nhất là: 1 A. 1 B. 2 C. D. –1 2 1 Câu 45. Đồ thị hàm số y = x 1 có x A. Tiệm cận đứng là đường thẳng x = 0 khi x 0– B. Tiệm cận ngang là đường thẳng y = 1 khi x + và x – 1 C. Tiệm cận xiên là đường thẳng y = – x – khi x + và khi x – 2 1 D. Tiệm cận xiên là đường thẳng y = x – khi x + và khi x – 2
  22. 1 Câu 46. Biết F(x) là nguyên hàm của f (x) và F(2) =1. Khi đó F(3) bằng x 1 3 1 A. ln B. C. ln 2 D. ln2 + 1 2 2 Câu 47. Trên hệ toạ độ Oxy cho đường cong (C) có phương trình là y = x2 + 2x – 1 và hai điểm A(1;2), B (2;  3). Tịnh tiến hệ toạ độ Oxy theo véc tơ AB ta được phương trình của đường cong (C) trên hệ trục toạ độ mới IXY là : A. Y = (X + 1)2 + 2(X+1) – 3 B. Y = (X + 2)2 + 2(X+2) – 4 C. Y = (X + 1)2 + 2(X+1) – 2 D. Y = (X + 2)2 + 2(X+2) – 1 sin x Câu 48. Hàm số y = có nguyên hàm là hàm số: 1 cosx 1 A. y = ln + C B. y = ln(1 cosx) + C 1 cosx x x C. y = lncos + C D. y = 2.lncos + C 2 2 Câu 49. Diện tích hình phẳng giới hạn bởi các đường y = x2 và y = 2 – x2 là: 1 1 1 1 A. 2 (x2 1)dx B. 2 (1 x2 )dx C. 2 (x2 1)dx D. 2 (1 x2 )dx 0 0 1 1 x2 2x víi x 0 Câu 50. Hàm số y = 2x víi 1 x 0 3x 5 víi x 1 A. Không có cực trị B. Có một điểm cực trị C. Có hai điểm cực trị D. Có ba điểm cực trị Hết