Đề thi thử Trung học phổ thông quốc gia môn Toán học - Đề số 18 - Năm học 2016-2017 (Kèm đáp án)
Bạn đang xem tài liệu "Đề thi thử Trung học phổ thông quốc gia môn Toán học - Đề số 18 - Năm học 2016-2017 (Kèm đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Tài liệu đính kèm:
- de_thi_thu_trung_hoc_pho_thong_quoc_gia_mon_toan_hoc_de_so_1.doc
Nội dung text: Đề thi thử Trung học phổ thông quốc gia môn Toán học - Đề số 18 - Năm học 2016-2017 (Kèm đáp án)
- LUYỆN ĐỀ TRƯỚC KỲ THI QUỐC GIA 2017 ĐỀ CHUYÊN VỊ THANH - HẬU GIANG - Thời gian làm bài: 90 phút Câu 1: Đường cong trong hình bên là một đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D dưới đây. Hỏi hàm số đó là hàm số nào? A. B.y x4 2x 1. y x3 3x 1. C. D.y x4 2x2 1. y x3 3x 1. Câu 2: Cho hàm số y f x có lim f x , lim f x . Khẳng định nào sau đây là x 0 x 2 khẳng định đúng? A. Đồ thị hàm số đã cho không có tiệm cận đứng. B. Đồ thị hàm số đã cho có đúng một tiệm cận đứng. C. Đồ thị hàm số đã cho có hai tiệm cận đứng là y 0 và y 2. D. Đồ thị hàm số đã cho có hai tiệm cận đứng là x 0 và x 2. Câu 3: Hàm số y x3 3x nghịch biến trên khoảng nào? A. B. C.; 0D. . 1;1 . 0; . ; . Câu 4: Hỏi hàm số hàm số y f x xác định và liên tục trên ¡ và có bảng biến thiên: x 1 0 2 y' 0 0 y 0 3 3 Khẳng định nào sau đây là đúng? A. Hàm số có đúng hai cực trị. B. Hàm số có giá trị cực tiểu bằng 1 và 1. C. Hàm số có giá trị lớn nhất bằng 0 và giá trị nhỏ nhất bằng 3. D. Hàm số đạt cực đại tại x 0. 3 2 Câu 5: Tìm giá trị cực đại yCD của hàm số y x 3x 1. A. B.yC DC. D.1. yCD 0. yCD 3. yCD 2. Câu 6: Tìm giá trị lớn nhất của hàm số y x cos2 x trên đoạn 0; . 2 Trang 1
- A. B.ma C.x y D. . max y 0. max y . max y . 0; 2 0; 0; 4 0; 2 2 2 2 2x 1 Câu 7: Giả sử đường thẳng d : x a a 0 cắt đồ thị hàm số y tại một điểm duy x 1 nhất, biết khoảng cách từ điểm đó đến tiệm cận đứng của đồ thị hàm số bằng 1; ký hiệu x0 ; y0 là tọa độ của điểm đó. Tim y0. A. B.y0 C. D.1. y0 5. y0 1. y0 2. Câu 8: Tìm tất cả các giá trị thực của tham số m sao cho đồ thị hàm số y x4 2mx2 2m m4 có 3 cực trị tạo thành một tam giác đều. A. B.m C.3 D.3. m 1 3 3. m 1 3 3. m 3 3. Câu 9: Tìm tất cả các giá trị thực của tham số m sao cho đồ thị hàm số m2 1 x2 x 2 y có đúng một tiệm cận ngang. x 1 A. m 1 hoặc B.m 1. m 0. C. D.m Với 1 .mọi giá trị m. Câu 10: Khi nuôi cá trong hồ, một nhà sinh vật học thấy rằng: Nếu trên mỗi đơn vị diện tích của mặt hồ có n con cá thì trung bình mỗi con cá sau vụ cân nặng: P n 480 2n gam . Hỏi phải thả bao nhiêu con cá trên một đơn vị diện tích của mặt hồ để sau một vụ thu hoạch được nhiều cá nhất? A. B.n C.8 .D. n 12. n 20. n 24. mcos x 2 Câu 11: Tìm tất cả các giá trị thực của tham số m sao cho hàm số y nghịch 2cos x m biến trên khoảng ; . 3 2 A. 2 m 0 hoặc B.1 m 2. 1 m 2. C. D. 2 m 0. m 2. 2 Câu 12: Cho a 0 , biểu thức a 3 . a được viết dưới dạng lũy thừa với số mũ hữu tỷ là: 7 5 6 11 A. B.a 6 .C. D. a 6 . a 5 . a 6 . 4 Câu 13: Tập xác định của hàm số f x 4x2 1 là: 1 1 1 1 A. B.¡ . C. D. 0; . ¡ \ ; . ; . 2 2 2 2 Trang 2
- 3 Câu 14: Tìm đạo hàm của hàm số y x2 1 2 . 3 1 3x 1 1 A. B. C.x2 D. 1 2 . x2 1 2 . 3x x2 1 2 . 3x x2 1 . 2 2 4 Câu 15: Tập xác định của hàm số y x 3 là: A. B. 0 ;C. D. . ¡ \ 0. 0; . ¡ . 3x 2 x2 7 11 Câu 16: Phương trình có nghiệm là: 11 7 A. B.x C. 1D.; x 2. 1. x 1; x 2. x 1; x 2. x x Câu 17: Phương trình 9 3.3 2 0 có hai nghiệm x1, x2 x1 x2 . Tính A 2x1 3x2. A. B.4l oC.g3 D.2. 1. 3log3 2. 2log2 3. Câu 18: Nghiệm của bất phương trình log5 3x 2 1 là: 2 A. B.x C.1. D. x 3. x . x 1. 3 Câu 19: Theo hình thức lãi kép, một người gửi 100 triệu đồng vào ngân hàng với lãi suất 1,75% (giả sử lãi suất trong hằng năm không đổi) thì sau hai năm người đó thu được số tiền: A. 103351 triệu đồng.B. 103530 triệu đồng. C. 103531 triệu đồng.D. 103500 triệu đồng. 2 3 Câu 20: Nếu log7 x 8log7 ab 2log7 a b a,b 0 thì x bằng: A. B.a 4 bC.6. D. a 2b14. a6b12. a8b14. Câu 21: Cho 0 a 1. Tìm mệnh đề sai trong các mệnh đề sau. A. loga x 0 khi 0 x 1. B. loga x 0 khi x 1. C. Nếu x1 x2 thì loga x1 loga x2. D. Đồ thị hàm số y loga x có tiệm cận đứng là trục tung. Câu 22: Cho log2 5 a; log3 5 b. Giá trị của log6 5 tính theo a và b là: 1 ab A. B. C. .D. . a b. a 2 b2. a b a b Câu 23: Tính diện tích hình phẳng giới hạn bởi các đường: y x2 x 1 và y x4 x 1. 8 14 4 6 A. B. C D. . . . 15 15 15 15 Trang 3
- Câu 24: Tính tích phân cos2 x.sin x.dx. 0 2 2 3 A. B. C D. . . 0. 3 3 2 a Câu 25: Tích phân f x dx 0. Hãy chọn khẳng định đúng trong các khẳng định sau: a A. f x là hàm số chẵn.B. là hàm số lẻ. f x C. f x không liên tục trên đoạn D. aCác;a. đáp án đều sai. 5 5 5 Câu 26: Cho biết f x dx 3; g t dt 9. Tính A f x g x dx. 2 2 2 A. Chưa xác định.B. C. D. 12. 3. 6. Câu 27: Cho hình phẳng (H) giới hạn bởi các đường y sinx; x 0; y 0; x 5 .Tính thể tích vật thể tròn xoay sinh bởi hình phẳng (H) quanh quanh trục Ox. A. B. 2 C D. 0. 8. 3. d d b Câu 28: Nếu f x dx 5 và f x dx 2 với a b d. Tính f x dx. a b a A. B.m C. D.2. m 2. m 2. m 2. b Câu 29: Biết 2x 4 dx 0. Khi đó b nhận giá trị bằng: 0 A. B.b C.1; D.b 4. b 0; b 2. b 1; b 2. b 0; b 4. Câu 30: Vận tốc của một vật chuyển động là v t 3t2 5(m/s). Quãng đường vật đó đi được từ giây thứ 4 đến giây thứ 10 là: A. B.36 C.m .D. 252 m. 1200 m. 966 m. 1 3 2 Câu 31: Cho số phức z i. Tính số phức z . 2 2 1 3 1 3 A. B. C. D. i. i. 1 3i. 3 i. 2 2 2 2 Câu 32: Tìm số phức z thỏa mãn điều kiện 2z i.z 2 5i. A. B.z C.3 D.4 i. z 3 4i. z 4 3i. z 4 3i. Câu 33: Giả sử M z là điểm trên mặt phẳng phức biểu diễn số phức z. Tập hợp các điểm M z thỏa mãn điều kiện z 1 i 2 là một đường tròn: Trang 4
- A. I 1; 1 và B.R 2. và I 1; 1 R 2. C. I 1; 1 và D.R 4. và I 1; 1 R 2. 1 1 Câu 34: Biết số phức z thỏa mãn phương trình z 1. Tính P z2016 . z z2016 A. 0.B. 1.C. 2.D. 3. Câu 35: Tính thể tích V của khối hộp hình chữ nhật ABCD.A'B'C'D' , biết AB a, AD a 2 và AC' hợp với đáy một góc 60o. 3a3 2 A. B.V C.2 D.a3 6. V a3 2. V 3a3 2. V . 2 Câu 36: Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, cạnh bên SA vuông góc với đáy và SA a 3. Tính thể tích V của khối chóp S.ABC. 3 1 A. B.V C. D.a3 . V a3. V 3a3 2. V a3. 4 2 Câu 37: Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật có tâm I, AB a, BC a 3, tam giác SAC vuông tại S. Hình chiếu vuông góc của S xuống mặt phẳng (ABCD) trùng với trung điểm H của AI. Tính khoảng cách từ C đến (SAB). 2a 15 4a 51 a 15 a 15 A. B. C. D . . . 5 3 10 5 Câu 38: Cho lăng trụ tam giác ABC.A'B'C' và M là trung điểm AB. Lựa chọn phương án đúng. 1 1 A. B.V V . V V . M.A'B'C' 2 A.A'B'C' A.BCC'B' 2 ABC.A'B'C' 2 C. D.V V . V 2V . A'BCC'B' 3 ABC.A'B'C' ABCC' A'BCC' Câu 39: Một tứ diện đều cạnh 3 3cm có đỉnh trùng với đỉnh của hình nón và đáy tứ diện nội tiếp trong đáy hình nón. Tính thể tích V của hình nón. A. B.9 C.2 D.cm 3. 3 2 cm3. 6 3 cm3. 9 3 cm3. Câu 40: Cho tam giác vuông ABC đỉnh A, có AC 1 cm, AB 2 cm, M là trung điểm của AB. Quay tam giác BMC quanh trục AB. Gọi V và S tương ứng là thể tích và diện tích toàn phần của khối trên thu được qua phép quay trên. Lựa chọn phương án đúng. 1 A. B.V ; S 5 2 . V ; S 5 2 . 3 Trang 5
- 1 C. D.V ; S 5 2 . V ; S 5 2 . 3 Câu 41: Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình vuông cạnh a, SA 2a, SA ABCD , kẻ AH vuông góc SB, AK vuông góc SD. Mặt (AHK) cắt SC tại E. Tính thể tích khối cầu ngoại tiếp khối ABCDEHK. a3 2 4 a3 2 8 a3 2 a3 2 A. B. C. D . . . 3 3 3 6 Câu 42: Một hình trụ không nắp, bán kính đáy bằng 50cm và đựng đầy nước. Khi cho 3 quả cầu nặng vào thùng thì quả cầu chìm trong nước làm nước tràn ra. Biết các quả cầu tiếp xúc nhau và tiếp xúc với mặt xung quanh hình trụ, một quả cầu tiếp xúc với mặt đáy, một quả cầu tiếp xúc với mặt nước. Kí hiệu V 1là thể tích nước ban đầu và V 2là thể tích nước còn lại V trong thùng (sau khi cho 3 quả cầu vào). Tính tỉ số 2 . V1 V 2 V 1 V 1 V 5 A. B.2 C. D 2 . 2 . 2 . V1 3 V1 3 V1 6 V1 6 Câu 43: Tìm m để phương trình sau là phương trình của một mặt cầu: x2 y2 z2 2 m 1 x 2 2m 3 y 2 2m 1 z 11 m 0 A. B.0 C.m D. 1 . m 1, m 2. m 0, m 1. 1 m 2. Câu 44: Viết phương trình mặt cầu (S) có tâm I 1;4; 7 và tiếp xúc với mặt phẳng P : 6x 6y 7z 42 0. 2 2 2 3 2 2 2 A. B. S : x 5 y 3 z 1 . S : x 1 y 3 z 3 1. 4 C. D. S : x 1 2 y 4 2 z 7 2 121. S : x 1 2 y 2 2 z 2 2 9. x 1 3t Câu 45: Cho điểm M 4;1;1 và đường thẳng d : y 2 t . Hình chiếu H của M lên z 1 2t đường thẳng d là: A. B.H C. 1 ;D.2; 1 . H 2;3; 1 . H 1;2;1 . H 1; 2;1 . Câu 46: Viết phương trình mặt phẳng đi qua điểm M 2;5; 7 và nhận a 1; 2;3 , b 3;0;5 làm cặp vectơ chỉ phương. A. B.5x 2y 3z 21 0. 10x 4y 6z 21 0. Trang 6
- C. D.10 x 4y 6z 21 0. 5x 2y 3z 21 0. Câu 47: Viết phương trình đường thẳng d qua M 1; 2;3 và vuông góc với hai đường thẳng x 1 t x y 1 z 1 d1 : và d2 : y 2 t . 1 1 3 z 1 3t x 1 t x 1 3t x 1 t x 1 A. B. y C. D.2 t y 2 t y 1 2t y 2 t z 3 z 3 t z 3t z 3 t Câu 48: Tìm tâm I và bán kính R của mặt cầu S : x2 y2 z2 6x 4y 2z 5 0. A. B.I 0;0;1 ,R 3. I 3; 2;1 ,R 3. C. D.I 3 ; 1;8 ,R 4. I 1;2;2 ,R 3. x 2 y 3 z 4 Câu 49: Viết phương trình mặt phẳng Q chứa đường thẳng d : và 2 3 1 vuông góc với mặt phẳng Oyz. A. B.x C.y D.2 z 4 0. y 3z 15 0. x 4y 7 0. 3x y z 2 0. Câu 50: Cho mặt cầu S có phương trình x2 y2 z2 2x 4y 6z 10 0 và mặt phẳng P : x 2y 2z m 0. (S) và (P) tiếp xúc nhau khi: A. B.m 7; m 5. m 7; m 5. C. D.m 2; m 6. m 2; m 6. ĐÁP ÁN 1- C 2- D 3- B 4- D 5- A 6- A 7- B 8- A 9- C 10- B 11- A 12- B 13- C 14- C 15- A 16- C 17- C 18- A 19- C 20- B 21- C 22- B 23- C 24- B 25- B 26- B 27- B 28- D 29- D 30- D 31- B 32- A 33- D 34- C 35- C 36- D 37- A 38- C 39- A 40- C 41- A 42- B 43- C 44- C 45- B 46- A 47- A 48- B 49- B 50- A LỜI GIẢI CHI TIẾT Câu 1: Đáp án C Nhận thấy đồ thị hàm số có 3 cực trị nên: Trang 7
- ' 3 1 4 y 4 4x 2 0 x Hàm số y x 2x 1 không thể có 3 cực trị. x 2x 1 3 2 Loại A. B và D là hàm số bậc 3 nên chỉ có tối đa 2 cực trị. Loại B và D. x 0 y' 4x3 4x 0 x4 2x2 1 x 1 Hàm số y x4 2x2 1 có 3 điểm cực y" 4 0 " 2 0 y 4 2 12x 4 x 2x 1 " y 1 8 0 trị. Câu 2: Đáp án D Ta có: limf x đồ thị hàm số đã cho có TCĐ x 0. x 0 Ta có: limf x đồ thị hàm số đã cho có TCĐ x 2. x 2 Câu 3: Đáp án B Ta có: y' 3x2 x 0 x 1. Ta có bảng biến thiên. x 1 1 y' 0 0 2 y 2 Nhận thấy hàm số nghịch biến trên khoảng 1;1 . Câu 4: Đáp án D Hàm số đã cho không có đạo hàm tại điểm x 0 tuy nhiên y’ vẫn đổi dấu từ dương sang âm khi qua điểm x 0 nên hàm số đạt cực đại tại điểm x 0. Câu 5: Đáp án A y 0 1 ' 2 x 0 Ta có: y 3x 6x 0 yCD 1. x 2 y 2 3 Câu 6: Đáp án A Trang 8
- y' 1 2cos x.sin x 1 sin 2x 0 x k , x 0; x 4 2 4 y 0 1 1 y max y . 4 4 2 0; 2 2 y 2 2 Câu 7: Đáp án B 2a 1 Gọi M a; a 0 là điểm cần tìm. Đồ thị hàm số có TCĐ là đường x 1. a 1 2a 1 Khi đó: d M;x 1 1 a 1 1a 0 a 2 y 5. 0 a 1 Câu 8: Đáp án A x 0 Ta có: y' 4x3 4mx 0 . Để hàm số có 3 điểm cực trị thì 2 m 0. x m Khi đó tọa độ 3 điểm cực trị là: A 0;2m m4 ,B m;m m4 ,C m;m m4 . Do AB AC m m4 nên tam giác ABC cân tại A. m 0 Khi đó tam giác ABC đều AB BC m4 m 4m m 3 3 do m 0 . 3 m 3 Câu 9: Đáp án C 2 1 2 2 2 m 1 m 1 x x 2 2 lim y lim lim x x m2 1 x x x 1 x 1 1 x 2 Ta có: m 1 0 2 1 2 2 2 m 1 x x 2 m 1 2 x x 2 lim y lim lim m 1 x x x 1 x 1 1 x Đồ thị hàm số có một TCN khi và chỉ khi lim y lim y m2 1 m2 1 m 1. x x Câu 10: Đáp án B Khối lượng cá lớn nhất thu được trên một đơn vị diện tích hồ bằng: f n 480n 20n2 20 24n n2 20 144 12 n 2 2880 12 n 0 n 12. Câu 11: Đáp án A Trang 9
- 2 m2 4 m 4 sin x Ta có: y' . sin x . 2cos x m 2 2cos x m 2 m2 4 0 ' Hàm số đã cho nghịch biến trên ; y 0,x ; 3 2 3 2 2cos x m,x ; 3 2 2 m 2 2 m 0 m 0;1 1 m 2 Câu 12: Đáp án A 2 2 1 7 Ta có: a 3 . a a 3 .a 2 a 6 . Câu 13: Đáp án C 2 1 1 1 Hàm số xác định khi và chỉ khi 4x 1 0 x D ¡ \ ; . 2 2 2 Câu 14: Đáp án C 3 ' 1 1 ' 2 3 2 2 ' 2 Ta có: y x 1 2 x 1 2 x 1 3x x 1 2 . 2 Câu 15: Đáp án A Hàm số xác định khi và chỉ khi x 0 D 0; . Câu 16: Đáp án C 3x 2 x2 3x 2 x2 7 11 11 11 2 x 1 Ta có: x 3x 2 0 . 11 7 7 7 x 2 Câu 17: Đáp án C x 2 3 1 x 0 x 0 9x 3.3x 2 0 3x 3.3x 2 0 1 A 3log 2. x 3 3 2 x log3 2 x2 log3 2 Câu 18: Đáp án A 3x 2 0 Ta có: log5 3x 2 1 3x 2 5 x 1. 3x 2 5 Câu 19: Đáp án C Công thức lãi kép là: T A 1 r n . Số tiền thu được sau hai năm là: 100000. 1 0,0175 2 103531 triệu đồng. Câu 20: Đáp án B Trang 10
- a8b16 log x 8log ab2 2log a3b log a8b16 log a6b2 log log a 2b14 x a 2b14. 7 7 7 7 7 7 a6b2 7 Câu 21: Đáp án C 0 x1 x2 Nếu loga x1 loga x2 x1 x2. a 1 Câu 22: Đáp án B 1 1 ab Ta có: log 5 log 5 . 6 2.3 log 2 log 3 1 1 a b 5 5 a b Câu 23: Đáp án C 2 4 4 2 x 0 PT hoành độ giao điểm là: x x 1 x x 1 x x 0 x 1 Với x 1;1 thì x2 x 1 x4 x 1 . 1 1 3 5 2 4 x x 4 Khi đó diện tích hình phẳng là: S x x dx . 3 5 15 1 1 Câu 24: Đáp án B cos3 x 2 Ta có: cos2 x.sin xdx cos2 x.d cos x . 0 0 3 0 3 Câu 25: Đáp án B x a t a a a Đặt t x dt dx. Đổi cận I f t dt f t dt x a t a a a a a I f x dx 2I f x f x dx 0 f x f x f x là hàm số lẻ. a a Câu 26: Đáp án B 5 5 5 5 5 Ta có: A f x g x dx f x dx g x dx f x dx g t dt 3 9 12. 2 2 2 2 2 Câu 27: Đáp án B 2 2 1 cos2x x sin 2x Thể tích cần tính là V sin xdx dx . 0 0 2 2 4 0 2 Câu 28: Đáp án D b d b d d Ta có: f x dx f x dx f x dx f x dx f x dx 5 2 3. a a d a b Trang 11
- Câu 29: Đáp án D b b b 0 Ta có: 2x 4 dx x2 4x b2 4b 0 . 0 0 b 4 Câu 30: Đáp án D Quãng đường vật đi được từ giây thứ 4 đến giây thứ 10 là: 10 10 S 3t2 5 dt t3 5t 966 m . 4 4 Câu 31: Đáp án B 2 2 1 3 1 3 3 2 1 3 Ta có: z i i i i. 2 2 4 2 4 2 2 Câu 32: Đáp án A Gọi z a bi là số phức cần tìm 2 a bi i a bi 2 5i 2a b 2 b 4 2a b 2b a i 2 5i z 3 4i 2b a 5 a 3 Câu 33: Đáp án D Gọi z x yi z 1 i x 1 y 1 i 2 x 1 2 y 1 2 4 Vậy tập hợp các điểm M x; y thỏa mãn điều kiện z 1 i là một đường tròn có tâm I 1; 1 và bán kính bằng 2. Câu 34: Đáp án C 3 1 1 3 1 1 3 1 3 2 3 z 1 z 1 z 3 3 z 1 z 3 2 0 z 1 0 z 1 z z z z z 3 672 1 P z 672 1 1 2. z3 Câu 35: Đáp án C Ta có: AC BD AB2 AD2 a 3. Mặt khác C· 'AC 60o AA' AC.tan 60o 3a V AA'.AB.AD 3a3 2. Câu 36: Đáp án D 2 2a 3 1 S a 2 3 V SA.S a3. ABC 4 S.ABC 3 ABC Câu 37: Đáp án A Do tam giác SAC vuông tại S có đường cao SH nên có: SH2 HA.HC HA.3HA 3HA2. Trang 12
- a AC AB2 BC2 2a HA . 2 a 3 Suy ra SH . 2 HE AB, HF AC HF SAB . Do CA 4HA d A, SAB 4d H, SAB HE AH 1 a 3 HE.SH 15 HE HF . BC AC 4 4 HE2 SH2 10 2a 15 Suy ra d 4d . A H 10 Câu 38: Đáp án C V V do AM song song A'B'C' A sai. M.A'B'C' A.A'B'C' V V V A' .BCC'B' ABC.A'B'C' A' .ABC 1 2 V V V ABC.A'B'C' 3 ABC.A'B'C' 3 ABC.A'B'C' B sai, C đúng. Câu 39: Đáp án A Giả thiết được biểu diễn như hình vẽ. BD 3 3 3. 3 9 2 BM OB r BM 3. 2 2 2 d 3 SO AB2 OB2 27 9 3 2. 1 1 Suy ra V . r2h .9 .3 2 9 2 . N 3 3 Câu 40: Đáp án C Thể tích khối nón tạo thành khi quay tam giác ABC quanh cạnh AB là: 1 2 V AC2.AB 1 3 3 Sxq1 r AB.AC 5. Thể tích khối nón tạo thành khi quay tam giác AMC quanh cạnh AB là: 1 V AC2.AM 2 3 3 Sxq2 r AC.MC 2. Suy ra V V V ; S S S 5 2 . 1 2 3 1 2 Câu 41: Đáp án A Trang 13
- AH SB Do AH SC, cmtt : AK SC AH BC SC AHK SC AE. AH SBC AH CH AHC vuông tại H 1 1 1 OH AC tương tự có: OK AC; OE AC 2 2 2 AC a 2 Do đó khối ABCDEHK nội tiếp mặt cầu tâm O, bán kính R 2 2 4 2 V R3 a3. C 3 3 Câu 42: Đáp án B Gọi R là bán kính của quả cầu, khi đó chiều cao của hình trụ là h 3.2R 6R và bán kính 2 3 đáy của khối trụ là R d R. Ta có: V1 R d .h 6 R . Tổng thể tích của 3 khối cầu là V V 3 3 4 3 3 V1 1 C 6 R 4 R 1 V C 3. R 4 R . Khi đó: 3 . 3 V2 V1 6 R 3 Câu 43: Đáp án C PT trên là PT của mặt cầu khi và chỉ khi m 1 2 2m 3 2 2m 1 2 11 m 0 2 m 1 9m 9m 0 . m 0 Câu 44: Đáp án C (S) tiếp xúc với (P) khi và chỉ khi d I, P R với I là tâm và R là bán kính của mặt cầu (S) 6 6.4 7.7 42 R 121 S : x 1 2 y 4 2 z 7 2 121. 62 62 72 Câu 45: Đáp án B Gọi (P) là mặt phẳng qua M và vuông góc với d nP ud 3;1; 2 P :3 x 4 y 1 2 z 1 0 P :3x y 2z 11 0 H là hình chiếu vuông góc của M lên d MH d H d P H 1 3t;2 t;1 2t 3 1 3t 2 t 2 1 2t 0 t 1 H 2;3; 1 . Câu 46: Đáp án A Gọi n là VTPT của mặt phẳng n a,b 5;2;3 Trang 14
- Vập PT mặt phẳng :5x 2y 3z 21 0. Câu 47: Đáp án A VTCP u u ,u với u 1; 1;3 là VTCP của d và u 1;1;3 là VTCP của d 1 2 1 1 2 x 1 t d2 ud 1;1;0 . Vậy phương trình đường thẳng d : y 2 t z 3 Câu 48: Đáp án B Dễ thấy I 3; 2;1 ; R 32 2 2 12 5 3. Câu 49: Đáp án B Ta có VTPT n u ,n 0;1; 3 Q : y 3z 15 0. Q d Oyz Câu 50: Đáp án A (S) tiếp xúc với (P) khi và chỉ khi d I, P R với I 1; 2;3 là tâm và R 2 là bán kính của mặt cầu (S) 1 4 6 M m 1 m 7 2 2 . 12 22 22 3 m 5 Trang 15