Đề luyện thi Trung học phổ thông quốc gia môn Toán Lớp 12 - Đề số 6 (Kèm đáp án)

doc 17 trang nhatle22 2470
Bạn đang xem tài liệu "Đề luyện thi Trung học phổ thông quốc gia môn Toán Lớp 12 - Đề số 6 (Kèm đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_luyen_thi_trung_hoc_pho_thong_quoc_gia_mon_toan_lop_12_de.doc

Nội dung text: Đề luyện thi Trung học phổ thông quốc gia môn Toán Lớp 12 - Đề số 6 (Kèm đáp án)

  1. ®Ò sè 6 Câu 1: Tập hợp A 0;1;2;3;4;5;6;7,E a1a 2a3a 4 / a1;a 2 ;a3;a 4 A,a1 0. Lấy 1 phần tử thuộc E bất kỳ. Tính xác suất để số đó chia hết cho 5. 5 13 1 13 A. B. C. D. 16 98 4 49 Câu 2: Trong hệ trục toạ độ Oxyz, cho A l;2;3 ,B l;0; 5 , P : 2x y 3z 4 0 .Tìm M P sao cho A, B, M thẳng hàng. A. M 3;4;11 B. C. D. M 2;3;7 M 0;1; 1 M 1;2;0 1 2cos x 1 cos x Câu 3: Phương trình 1 có bao nhiêu nghiệm thuộc khoảng 0;2018 . 1 2cos x .sin x A. 3025 B. C. D. 3026 3027 3028 sin 3x Câu 4: Tìm chu kì của hàm số y . 1 sin x 2 A. T B. C. D. T 2 T T 2 3 Câu 5: Trong các hàm sau đây, hàm số nào không nghịch biến trên ¡ . x 1 2 A. y x2 2x2 7x B. C.y D. 4x cos x y y 2 x 1 2 3 Câu 6: Từ các chữ số 0, 1, 2 có thể thành lập được bao nhiêu số tự nhiên (không bắt đầu bằng 0) là bội số của 3 và bé hơn 2.108. A. 4373 B. C. D. 4374 3645 4370 2x 1 Câu 7: Cho hàm số y . Mệnh để đúng là: x 1 A. Hàm số đổng biến trên ; l và l; . B. Hàm số nghịch biến trên ; l và l; . C. Hàm số đổng biến trên ; l và l; , nghịch biến trên 1;1 . D. Hàm số đổng biến trên tập ¡ . 2 Câu 8: Giá trị nhỏ nhất của hàm số y x2 x 0 bằng: x A. 4 B. C. D. 2 1 3 x 1 Câu 9: Cho hàm số y . Phát biểu nào sau đây là đúng? x2 4 A. Đồ thị hàm số có hai đường tiệm cận ngang là y 1, y 1 và hai đường tiệm cận đứng là x 2, x 2 1
  2. B. Đồ thị hàm số có hai đường tiệm cận đứng là y 1, y 1 và hai đường tiện cận ngang là x 2, x 2 C. Đồ thị hàm số có đúng một đường tiệm cận ngang là y ,1 hai đường tiệm cận đứng là x 2, x 2 D. Đồ thị hàm số không có tiệm cận ngang. Câu 10: Đổ thị sau đây là đổ thị của hàm số nào? x 1 2x 1 A. y B. y x 1 x 1 x 2 x 3 C. D.y y x 1 1 x x4 3 Câu 11: Đồ thị hàm số y x2 cắt trục hoành tại mấy điểm? 2 2 A. 3 B. C. D. 2 4 0 Câu 12: Tìm tất cả các giá trị của tham số m để hàm số y x3 2mx2 m2x 2 đạt cực tiểu tại x l. A. m 1 B. C. D. m 3 m 1  m 3 m 1 Câu 13: Cho hàm số y f x xác định và liên tục trên các khoảng ;0 , 0; và có bảng biến thiên như sau: x 2 0 2 y' + 0 + + - y 0 4 7 Tìm tất cả các giá trị thực của m để đường thẳng y mcắt đổ thị hàm số y f x tại 3 điểm phân biệt. A. 4 m 0 B. C. D. 4 m 0 7 m 0 4 m 0 Câu 14: Hình chóp S.ABCD có đáy ABCD là hình thoi cạnh 1, B· AD 60, SCD và SAD cùng vuông góc với mặt phẳng ABCD , góc gịữa SC và mặt đáy ABCD bằng 45. Tính diện tích mặt cẩu ngoại tiếp tứ diện SBCD. 7 7 7 7 A. B. C. D. 2 4 6 3 Câu 15: Giải bất phương trình log2 3x 2 log2 6 5x được tập nghiệm là a;b Hãy tính tổng S a b 26 8 28 11 A. B.S C. D. S S S 5 5 15 5 2
  3. Câu 16: Tính đạo hàm của hàm số y 2x 1. 2x 1 A. y' x 1 2x ln 2 B. C.y D.' 2x 1 log 2 y' y' 2x 1 ln 2 ln 2 1 Câu 17: Nghiệm của bất phương trình 3x 2 là: 9 A. x 4 B. C. D. x 0 x 0 x 4 Câu 18: Một cái bổn chứa nước gổm hai nửa hình cầu và một hình trụ (như hình vẽ). Đường sinh của hình trụ bằng hai lần đường kính của 128 hình cầu. Biết thể tích của bồn chứa nước là m3 .Tính diện tích 3 xung quanh của cái bồn chứa nước theo đơn vị m2. A. 50 m2 B. C. D. 64 m2 40 m2 48 m2 Câu 19: Số nào trong các số phức sau là số thực? A. 3 2i 3 2i B. 3 2i 3 2i C. D. 5 2i 5 2i 1 2i 1 2i Câu 20: Cho điểm M là điểm biểu diễn của số phức z. Tìm phần thực và phần ảo cuả số phức z. A. Phần thực là 4 và phần ảo là 3i B. Phần thực là 3 và phần ảo là 4i C. Phần thực là 4 và phần ảo là 3 D. Phần thực là 4 và phần ảo là 4 Câu 21: Trong không gian Oxyz, cho ba véctơ a 1; 10 ,b 1; 1;0 , c 1; 1; 1 . Trong các mệnh đề sau, mệnh đề nào sai? A. b  c B. C. D. c 3 a 2 b  a Câu 22: Trong không gian với hệ toạ độ Oxyz,cho mặt phẳng P : 2x y z 3 0 và điểm A 1; 2;1 . Phương trình đường thẳng đi qua A và vuông góc với P là: 1 2t x 1 2t x 2 t x 1 2t A. y 2 4t B. C. D. y 2 2t y 1 2t y 2 t z 1 3t z 1 2t z 1 t z 1 t Câu 23: Trong không gian với hệ toạ độ Oxyz, cho điểm A 9; 3; 5 , B a;b; c .Gọi M, N, P lần lượt là giao điểm của đường thẳng AB với các mặt phẳng toạ độ Oxy , Oxz và Oyz . Biết M, N, P nằm trên đoạn AB sao cho AM MN NP PB. Giá trị của tổng a b c là: [§­îc ph¸t hµnh bëi Dethithpt.com] A. 21 B. C. D. 15 15 21 3
  4. Câu 24: Cho hình lăng trụ tứ giác đều ABCD.A’B’C’D’ có cạnh đáy bằng a. Biết đường chéo cùa mặt bên là a 3. Khi đó, thể tích khối làng trụ bằng: a3 2 A. B.a3 C.3 D. a3 2 2a3 3 Câu 25: Cho hình chóp S.ABC có SA vuông góc với mặt phẳng ABC . Tam giác ABC vuông tại C, AB a 3, AC a. Tính thể tích khối chóp S.ABC biết rằng SC a 5. a3 6 a3 6 a3 2 a3 10 A. B. C. D. 6 4 3 6 dx Câu 26: Tính , ta được: 2x 1 1 2 1 A. ln 2x 1 C B. C. D. C ln 2x 1 C ln 2x 1 C 2 2x 1 2 2 1 b Câu 27: Cho ln x 1 dx a ln b, a,b ¢ . Tính a 3 . 0 1 1 A. 25 B. C. D. 16 7 9 Câu 28: Tập nghiệm của phương trình z4 2z2 8 0 là: A. 2; 4i B. C. D. 2; 2i 2i; 2 2; 4i Câu 29: Một vật chuyển động với vận tốc v t có gia tốc là a t 3t2 t m / s2 .Vận tốc ban đẩu của vật là 2 m / s . Hỏi vận tốc của vật sau 2s. A. B.12 mC./ D.s 10m / s 8m / s 16m / s Câu 30: Diện tích hình phẳng được tô đậm trong hình vẽ sau là: 22 A. B. 2 3 16 10 C. D. 3 3 Câu 31: Cho tứ diện ABCD và M là điểm ở trên cạnh AC. Mặt phẳng qua và M song song với AB và CD. Thiết diện của tứ diện cắt bởi là: A. Hình bình hànhB. Hình chữ nhậtC. Hình thangD. Hình thoi Câu 32: Trong hệ tục toạ độ không gian Oxyz, cho A 1;0;0 ,B 0;b;0 ,C 0;0;c , biết b,c 0, phương trình mặt phẳng P : y z 1 0. Tính M b c biết 1 ABC  P ,d O; ABC 3 1 5 A. 2 B. C. D. 1 2 2 4
  5. Câu 33: Cho khối lập phương ABCD. A’B’C’D’ có cạnh là a. Tính thể tích khối chóp tứ giác D.ABC'D'. a3 a3 2 a3 2 a3 A. B. C. D. 3 6 3 4 Câu 34: . Cho hai đường tròn bằng nhau có tâm lấn lượt là O, O’, biết chúng tiếp xúc ngoài, một phép quay tâm I và góc quay biến đường tròn O thành đường tròn O' . Khẳng 2 định nào sau đây sai?[§­îc ph¸t hµnh bëi Dethithpt.com] A. I nằm trên đường tròn đường kính OO’. B. I nằm trên đường trung trực đoạn OO’. C. I là giao điểm của đường tròn đường kính OO’ và trung trực đoạn OO’ D. Có hai tâm I của phép quay thỏa mãn điều kiện đầu bài. Câu 35: Cho ba số thực dương a, b, c khác 1. Đồ thị các hàm số y loga x, y logb x, y logc x được cho trong hình vẽ bên Tìm khẳng định đúng. A. b c a B. a b c C. D.a c b b a c Câu 36: Tìm m để hàm số y mx4 2 m 1 x2 2 có 2 cực tiểu và một cực đại. A. m 0 B. C. D. 0 m 1 m 2 1 m 2 Câu 37: Cho hình chóp S.ABC có SA 3a,SA vuông góc vói mặt phẳng đáy, AB 2a,A· BC 120. Khoảng cách từ A đến SBC bằng: 3a 3a 10 6a 13 A. B. C. D. a 13 2 10 13 Câu 38: Biết rằng năm 2001, dân số Việt Nam là 78.685.800người và tỉ lệ tăng dân số năm đó là 1,7%. Cho biết sự tăng dân số được ước tính theo công thức S A.eN (trongr đó A: là dân số của năm lấy làm mốc tính, S là số dân sau N năm, r là tỉ lệ tăng dân số hằng năm). Nếu dân số vẫn táng với tỉ lệ như vậy thì đến năm nào dân số nước ta ở mức 120 triệu A. 2006 B. C. D. 2020 2022 2025 2 x x Câu 39: Tìm tất cả các giá trị của m để hàm số y log2018 2017 x m xác định với 2 mọi x thuộc 0; . A. m 9 B. C. D. m 2 0 m 1 m 1 Câu 40: Cắt một hình nón bằng một mặt phẳng đi qua trục của nó ta được thiết diện là một tam giác vuông cân có cạnh huyến bằng a, diện tích xung quanh của hình nón đó là: a 2 2 a 2 2 A. S B. C. D. S S a 2 S a 2 2 xq 4 xq 2 xq xq 5
  6. Câu 41: Cho số phức z thoả mãnz 3 4i 2, w 2z 1 i. Khi đó w có giá trị lớn nhất là: A. 16 74 B. C. D. 2 130 4 74 4 130 n 26 1 7 Câu 42: Tìm hệ số của x trong khai triển 4 x biết n thỏa mãn biểu thức sau x 1 2 n 20 C2n 1 C2n 1 C2n 1 2 1. A. 210 B. C. D. 126 462 924 Câu 43: Trong không gian hệ tọa độ Oxyz cho tứ diện ABCD với A 2;3; 2 ,B 6; 1; 2 , C l; 4;3 ,D l;6; 5 . Tìm tọa độ điểm M thuộc đường thẳng CD sao cho tam giác ABM có chu vi nhỏ nhất. A. M 1;1;0 B. C. D. M 0;1; 1 M 1;1; 1 M 1;1; 1 Câu 44: Cho tam giác ABC có các góc A, B, C tạo thành một cấp số nhân công bội 2. Khẳng định nào sau đây đúng? 1 1 1 1 1 1 1 1 1 1 1 1 A. B. C. D. 1 a b c b a c c a b a b c Câu 45: Cho hình vẽ dưới đây trong đó A, B, C, D lần lượt là tâm của bốn đường tròn có bán kính bằng nhau, chúng tạo thành một hình vuông có cạnh là 4. Bốn đường tròn nhỏ bằng nhau và tâm của nó nằm trên các cạnh của hình vuông ABCD và mồi đường tròn này tiếp xúc với hai đường tròn lớn. Tìm diện tích lớn nhất của phần in đậm. [§­îc ph¸t hµnh bëi Dethithpt.com] A. 5.38 B. C. D. 7.62 5.98 4.44 x 1 y 1 Câu 46: Cho hai số thực dương x, y thỏa mãn log3 x y 2 1 log3 .Giá y x x2 y2 a trị nhỏ nhất của biểu thức với a,b ¥ và a,b 1. Hỏi a b bằng bao nhiêu. xy b A. 2 B. C. D. 9 12 13 Câu 47: Cho hình nón có đỉnh S, chiều cao h và bán kính đáy bằng R. Mặt phẳng qua S cắt hình nón tạo ra một thiết diện tam giác. Diện tích lớn nhất của thiết diện bằng: 6
  7. R 2 h2 R 2 h2 R 2 h2 R 2 A. h2 B. C. D. 2 4 3 2 13 23 33 n3 a Câu 48: Biết lim a,b ¥ . Giá trị của 2a 2 b2 là: n3 1 b A. 33 B. C. D. 73 51 99 Câu 49: Cho ba số dương a, b, c theo thứ tự lập thành cấp số cộng. Giá trị lớn nhất của biểu a 2 8bc 3 thức P có dạng x y x, y ¥ . Hỏi x y bằng bao nhiêu: 2a c 2 1 A. 9 B. C. D. 11 13 7 Câu 50: Diện tích nhỏ nhất giới hạn bởi parabol P : y x2 1 và đường thẳng d : y mx 2 là: 4 2 3 A. B. C. D. 1 3 5 4 7
  8. Đáp án 1-D 2-C 3-C 4-B 5-C 6-C 7-A 8-D 9-A 10-B 11-B 12-A 13-B 14-D 15-D 16-D 17-A 18-D 19-B 20-C 21-A 22-D 23-B 24-B 25-C 26-D 27-C 28-C 29-A 30-D 31-A 32-D 33-A 34-D 35-A 36-B 37-D 38-A 39-D 40-A 41-D 42-A 43-B 44-A 45-B 46-D 47-D 48-D 49-B 50-A LỜI GIẢI CHI TIẾT Câu 1: Đáp án D 4 3 Số phần tử của tập E : A8 A7 1470 Để a1a 2a3a 4 chia hết cho 5 điều kiện cần và đủ là a 4 0 hay a 4 5 Nếu a 4 0 thì lấy trong 7 chữ số 1,2, .7. 3 Vậy có A7 số tận cùng bằng 0 3 2 Nếu a 4 5 thì các số a1a 2a3 là A7 A6 180 số 3 2 2A7 A6 13 Vây xác suất để số đó chia hết cho 5 là 4 3 A8 A7 49 Câu 2: Đáp án C x 1 t qua A 1;2;3 Phương trình AB:  x 2 t , t ¡ VTCP AB 2; 2; 8 2 1; 1; 4 z 3 4t M P sao cho A, B, M thẳng hàng M AB P M AB M 1 t;2 t;3 4t .M P 2 1 t 2 t 3 3 4t 0 t 1. Vậy M 0;1; 1 . Câu 3: Đáp án C 1 2cos x 1 cos x 1 1 2cos x sinx 0 1 2cos x .sinx 1 cos x 2cos2x sinx 2sin x cos x cos2x cos x sin 2x sinx 0 3x x 3x x 2cos cos 2sin cos 0 2 2 2 2 8
  9. x cos 0 l x 3x 3x 2 2 2cos sin cos 0 x k . 2 2 2 3x 6 3 sin 0 2 4 Mà 2 2 1 3 1 3 1 k 0;2018 0 k 2018 . k 2018 . k 3027.25 6 3 6 3 6 2 6 2 4 Do đó có 3027 nghiệm. Câu 4: Đáp án B 2 Vì hàm số sin x có chu kỳ T 2 và sin 3x có chu kỳ T nên hàm số f có chu kỳ T là 1 2 3 bội số chung nhỏ nhất của T1 và T2 hay T 2 . Câu 5: Đáp án C 1 2x Với y 2 ta có y' 2 x 1 x2 1 y' 0 khi x 0 và y' 0 khi x 0 . Nên hàm số không nghịch biến trên ¡ . Câu 6: Đáp án C Ta xem số thỏa mãn yêu cầu bài toán là số có dạng: A a1a 2a3a 4a5a6a7a8a 9trong đó các ai 0;1;2 và các ai không đồng thời bằng 0 . 8 + Vì A 2.10 nên a1 0;1 a1 có 2 cách chọn. + Các số từ a 2 đến a8 mỗi số đều có 3 cách chọn. + Chữ số a9 chỉ có 1 cách chọn ( Vì nếu a1 a8 chia cho 3 dư 0 thì chọn a9 0,dư 1 thì chọn a9 2 và dư 2 thì chọn a9 1 ). 7 Vậy có tất cả là 2.3 4374 số ( gồm luôn các số dạng 0a 2a3a 4a5a6a7a8a9 ). Do đó số các số lập được thỏa mãn yêu cầu bài toán là 2.37 36 3645 số. Câu 7: Đáp án A TXĐ: D ¡ \ 1 1 y' 0,x D. x 1 2 Hàm số đồng biến trên ; 1 và 1; . Câu 8: Đáp án D 2 y' 2x , x 0; y' 0 x 1 do x 0 . x2 Ta có: f 1 3, lim y , lim y . x 0 x 0 Vậy giá trị nhỏ nhất là y 3 . 9
  10. Câu 9: Đáp án A TXĐ D ¡ \  2;2. lim y , lim y Đồ thị hàm số có hai tiệm cận đứng là x 2, x 2 . x 2 x 2 1 1 x 1 x 1 x x lim y 1, lim y 1 Đồ thị có hai đường tiệm cận ngang là x 4 x 4 x 1 x 1 x2 x2 y 1, y 1. Câu 10: Đáp án B Dựa vào đồ thị, có 2 đường tiện cận là x 1 và y 2 Câu 11: Đáp án B x4 3 x2 1 Phương trình hoành độ giao điểm : x2 0 x 3. 2 2 2 x 3 => đồ thị hàm số cắt trục hoành tại 2 điểm phân biệt. Câu 12: Đáp án A TXĐ D ¡ y' 3x2 4mx m2 , y'' 6x 4m. Do hàm số đã cho là hàm bậc ba nên hàm số đạt cực tiểu tại x 1. m 1 y' 1 0 2 m 4m 3 0 m 3 m 1. y'' 1 0 6 4m 0 3 m 2 Câu 13: Đáp án B Dựa vào bảng biến thiên, đường thẳng y mcắt đồ thị hàm số y f x tại 3 điểm phân biệt khi 4 m 0 .[§­îc ph¸t hµnh bëi Dethithpt.com] Câu 14: Đáp án D ABCD là hình thoi có B· AD 60 ABD và BCD là hai tam giác đều cạnh bằng 1. SAD  ABCD SCD  ABCD SD  ABCD . SAD  SCD SD Gọi G là trọng tâm tam giác ABC. Kẻ là trục đường tròn ngoại tiếp tam giác BCD. Trong mặt phẳng SDG , kẻ đường thẳng Ky vuông góc với SD và cắt Gx tại I ( với K là trung điểm SD) I là tâm mặt cầu ngoại tiếp tứ diện SBCD. 1 2 3 3 21 Ta có: IG KD ,DG . ID IG2 GD2 . 2 3 2 3 6 10
  11. 2 21 7 Vậy diện tích mặt cầu ngoại tiếp tứ diện SBCD là S 4 . . 6 3 Câu 15: Đáp án D 2 x 3 3x 2 0 6 6 log2 3x 2 log2 6 5x 6 5x 0 x 1 x . 5 5 3x 2 6 5x x 1 6 11 a 1;b S . 5 5 Câu 16: Đáp án D Ta có: y' 2x 1 ln 2 Câu 17: Đáp án A 1 3x 2 3x 2 3 2 x 2 2 x 4 9 Câu 18: Đáp án D Gọi 4x m là đường sinh hình trụ. đường tròn đáy hình trụ và mặt cầu có bán kính là x m Thể tích bồn chứa nước này chình là thể tích của khối trụ có bán kính đáy R x đường sinh l h 4x và thể tích khối cầu có bán kính R x . 2 4 3 128 Do đó x .4x x x 2 m . 3 3 Vậy diện tích xung quanh bồn nước là: S 4x2 2x.4x 48 m2 . Câu 19: Đáp án B 3 2i 3 2i 6. Câu 20: Đáp án C Câu 21: Đáp án A b.c 2 0 b,c không vuông góc với nhau. Câu 22: Đáp án D x 1 2t qua A 1; 2;1 . Đường thẳng : y 2 t. VTCP n P 2; 1;1 z 1 t Câu 23: Đáp án B x 9 9 a t Đường thẳng AB y 3 3 b t. z 5 5 c t 11
  12. Từ điều kiện M, N, P AB và AM MN NP PB . M, N, P là trung điểm của AB, AN và BN 9 a 3 b 5 c 9 3 5 9 a 3 b 5 c 2 2 2 N ; ; ,M ; ; 2 2 2 2 2 2 9 a 3 b 5 c a b c 2 2 2 M ; ; 2 2 2 5 c 5 2 0 M O xy 2 a 3 3 b Mà N O xz 0 b 3 . Vậy a b c 15. 2 c 15 P Oyz 9 a a 2 2 Câu 24: Đáp án B Ta có: AB a,A 'B a 3 AA'=a 2 2 3 VABCD.A'B'C'D' A A '. AB a 2 Câu 25: Đáp án C BC AB2 AC2 a 2. SA SC2 AC2 2a 1 1 1 a3 2 S SA.S .2a. .a.a 2 . S.ABC 3 ABC 2 2 3 Câu 26: Đáp án D dx 1 ln 2x 1 C 2x 1 2 Câu 27: Đáp án C 1 u ln x 1 du dx Đặt x 1 . dv dx v x 1 1 1 1 I ln x 1 dx x 1 ln x 1 1 x 1 . dx 2ln 2 x 1 2ln 2 1 1 ln 4. 0 0 0 0 x 1 a 1,b 4 a 3 b 16. Câu 28: Đáp án C 12
  13. z2 2 z 2i z4 2z2 8 0 2 z 4 z 2 Câu 29: Đáp án A t2 Ta có: v t a t dt 3 t2 t dt t3 c. 2 Ban đầu vật vận tốc 2 m / s v 0 2 c 2. t2 v t t3 2 v 2 12. 2 Câu 30: Đáp án D Dựa vào hình vẽ, diện tích hình phẳng giới hạn sẽ là: 2 4 10 S xdx x x 2 dx 0 2 3 Câu 31: Đáp án A Trên ABC kẻ MN / /AB; N BC Trên BCD kẻ NP / /CD;P BD Ta có chính là mặt phẳng MNP [§­îc ph¸t hµnh bëi Dethithpt.com] Sử dụng định lý ba giao tuyến ta có MNP  AD Qvới MQ / /CD / NP MQ / /NP / /CD Ta có  Thiết diện MNPQ là hình bình hành. MN / /PQ / /AB Câu 32: Đáp án D x y z Phương trình mặt chắn ABC là: 1. 1 b c 1 1 ABC  P 0 b c. b c 2 1 1 1 d O; ABC 9 1 2 b c 2 2 1 1 3 b 1 b c 1 1 b , do đó b,c 0 nên b c .M b c 1. 2 2 Câu 33: Đáp án A 1 Ta có V V V V V V V D.ABC'D' D.ABD' D.BC'D' D'.ABD B.DC'D' 2 D'.ABCD B.DCC'D' 1 1 1 1 a3 VABCD.A'B'C'D' VABCD.A'B'C'D' VABCD.A'B'C'D' . 2 3 3 3 3 Câu 34: Đáp án D Chỉ có một điểm I để IO,IO' 0. 2 13
  14. Câu 35: Đáp án A Dựa vào đồ thị, ta thấy hàm số y logb xnghịch biến, y loga x, y logc xđồng biến và đồ thị y logc x phía trên y loga x. Nên ta có b c a . Câu 36: Đáp án B TXĐ D ¡ y' 4mx3 4 m 1 x. x 0 y' 0 2 mx m 1 Hàm số có 2 điểm cực tiểu và 1 điểm cực đại khi phương trình y' 0 có ba nghiệm phân biệt và m 0 . Khi đó phương trình mx2 m 1 có hai nghiệm phân biệt khác 0 và m 0 . m 0 m 1 0 m 1. 0 m Câu 37: Đáp án D Gọi I là trung điểm của Cd, O là tâm hình vuông ABCD SO  ABCD . Ta có OI  CD,SI  CD · SCD ; ABCD ·SI;OI S· IO 60 . a a 3 SO OI.tan 60 3 2 2 BD  SO BD  SAC . BD  AC Kẻ OH  SA tại H =>OH là đoạn vuông góc chung của SA, BD.[§­îc ph¸t hµnh bëi Dethithpt.com] a 3 a 2 . SO.OA a 30 d SA,BD 2 2 . SO2 OA2 3a 2 2a 2 10 4 4 Câu 38: Đáp án A Ta có 78685800.eN.0,017 120000000 N 24,8(năm) Do đó, tới năm 2026 thì dân số nước ta đạt mức 120triệu người. Câu 39: Đáp án D Hàm số xác định với mọi x thuộc 0; khi và chỉ khi x2 x2 2017x x m 0,x 0; 2017x x m,x 0; * 2 2 x2 Xét hàm số: f x 2017x x trên 0; .Hàm số liên tục trên 0; 2 14
  15. f ' x 2017x.ln 2017 1 x và liên tục trên 0; f '' x 2017x. ln 2017 2 1 0,x 0; f ' x đồng biến trên 0; f ' x f ' 0 ln 2017 1 0,x 0; f x là hàm số đồng biến trên 0; min f x f 0 1. 0; Bất phương trình * f x m,x 0; min f x m m 1. 0; Câu 40: Đáp án A Thiết diện qua trục của hình nón là tam giác vuông cân có cạnh huyền bằng a =>bán kính a a 2 đường tròn đáy là R , đường sinh là . 2 2 a 2 2 Vậy diện tích xung quanh của hình nón là S Rl . xq 4 Câu 41: Đáp án D w 1 i x 1 y 1 i Đặt w x yi z . 2 2 x 7 y 9 i 2 2 2 2 z 3 4i 2 2 x 7 y 9 4 x 7 9 16. 2 =>Tập hợp điểm biểu diễn số phức w là đường tròn tâm I 7; 9 bán kính R 4 . Khi đó w có giá trị lớn nhất là OI R 4 130 . Câu 42: Đáp án A 0 1 2 20 Biểu thức đã cho viết thành C2n 1 C2n 1 C2n 1 2 0 1 n 2n 1 2n 1 Mà C2n 1 C2n 1 C2n 1 C2n 1 2 k 2n 1 k Do tính chất C2n 1 C2n 1 nên 0 1 n 2n 1 21 2n 1 2 C2n 1 C2n 1 C2n 1 2 2 2 n 10 4 7 k 4 10 k 7k Số hạng tổng quát trong khai triển x x là C10.x .x 26 k Hệ số của x trong khai triển là C10 với 4 10 k 7k 26 k 6 6 Hệ số đó là C10 210. [§­îc ph¸t hµnh bëi Dethithpt.com] Câu 43: Đáp án B 2 Ta có: AC 32 72 1 59,AD 32 72 12 59 ACD cân tại A 2 BC 32 72 52 83,BD 32 72 5 83 BCD cân tại B 15
  16. Từ đó gọi M là trung điểm của CD ta có AM  CD,BM  CD. Do đó chu vi ABM là p AB AM BM AM BM (vì AB không thay đổi), tức là khi M là trung min min điểm cuả CD hay M 0;1; 1 Câu 44: Đáp án A A 7 2 Ta có B 2A,C 2B 4A mà A B C B . 7 4 C 7 4 2 sin sin 1 1 1 1 1 1 1 Thế vào . 7 7 .sin . 2 4 4 2 b c 2R sin 2R sin 2R sin .sin 2R 7 a 7 7 7 7 Câu 45: Đáp án B Gọi bán kính của các đường tròn lớn là R x . 2 2 2 4 2x 2 8 Ta có: S 4 x 2 3 x 8 x 16 8 16 . 2 3 Câu 46: Đáp án D Ta có: x 1 y 1 x y 1 1 1 1 log3 x y 2 1 log3 3 x y 3 2 2 x y .3 2 y x y x x y x y x y x y x y 10 3 2 3 6 2 y x y x y x 3 Do đó a b 13. Câu 47: Đáp án D Thiết diện là tam giác SMN cân tại S. Kẻ bán kính OA của hình nón vuông góc với MN tại H. Đặt x OH. Tam giác OHM vuông tại H có:[§­îc ph¸t hµnh bëi Dethithpt.com] HM2 OM2 OH2 R 2 x2 HM R 2 x2 Tam giác vuông SOH tại O có: SH2 SO2 OH2 h2 x2 SH h2 x2 . Diện tích thiết diện: 1 1 S SH.MN h2 x2 .2 R 2 x2 h2 x2 . R 2 x2 SMN 2 2 Áp dụng bất đẳng thức Cô-si, ta có: 2 2 2 2 h x R x h2 R 2 h2 x2 . R 2 x2 . 2 2 16
  17. h2 R 2 R 2 h2 Suy ra S h2 x2 R 2 x2 x . max 2 2 Vậy thiết diện có diện tích lớn nhất khi và chỉ khi giao tuyến của với mặt đáy của hình R 2 h2 nón cách tâm của đáy một khoảng bằng . 2 Câu 48: Đáp án D 2 2 n n 1 13 23 33 n3 n 1 1 Ta có: 13 23 33 n3 do đó lim lim . 2 3n3 1 2 3n3 1 6 Nên 2a 2 b2 73. Câu 49: Đáp án B Ta có: a c 2b a 2b c a 2 2b c 2 a 2 8bc 4b2 4bc c2 a 2 8bc 2b c 2 2b c 3 t 3 1 Do đó P 10 với t 2b c , dấu bằng xảy ra khi 2b c . 2b c 2 1 t2 1 3 Vậy x y 11. Câu 50: Đáp án A Phương trình hoành độ giao điểm : x2 1 mx 2 x2 mx 1 0 m2 4 0m ¡ nên phương trình luôn có hai nghiệm phân biệt m m2 4 m m2 4 x , x x x 1 2 2 2 1 2 2 x2 x1 m 4,S x2 x1 m,P x2x1 1 Diện tích hình phẳng giới hạn bởi P và d là: x x 2 2 3 2 x2 2 2 x mx S x mx 1 dx x mx 1 dx x 2 2 x x1 x1 1 1 3 3 m 2 2 x2 x1 x2 x1 x2 x1 3 2 1 2 2 m 1 2 m x2 x1 x2 x2x1 x1 x2 x1 1 x2 x1 x2 x1 x2x1 x2 x1 1 3 2 3 2 m2 1 m2 m2 2 m2 4 m2 4 4 4 m2 4 1 m2 4 m2 4. 4. m ¡ 3 2 6 3 6 6 6 3 4 m2 4 Diện tích S nhỏ nhất bằng m2 4. nhỏ nhất m 0 . 3 6 17