Đề luyện thi Trung học phổ thông quốc gia môn Toán Khối 12 - Đề số 5 (Kèm đáp án)

doc 20 trang nhatle22 2080
Bạn đang xem tài liệu "Đề luyện thi Trung học phổ thông quốc gia môn Toán Khối 12 - Đề số 5 (Kèm đáp án)", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docde_luyen_thi_trung_hoc_pho_thong_quoc_gia_mon_toan_khoi_12_d.doc

Nội dung text: Đề luyện thi Trung học phổ thông quốc gia môn Toán Khối 12 - Đề số 5 (Kèm đáp án)

  1. ®Ò sè 5 x 1 t Câu 1: Trong không gian Oxyz, cho đường thẳng d : y 2 2t. Vecto nào dưới đây là z 1 t vecto chỉ phương của d? A. n 1; 2;1 B. C. D. n 1;2;1 n 1; 2;1 n 1;2;1 Câu 2: Họ nguyên hàm của hàm số f x 2x sin 2x là 1 1 A. x2 cos2x C B. C. D.x2 cos2x C x2 2cos2x C x2 2cos2x C 2 2 Câu 3: Trong không gian Oxyz, cho hai điểm A 1; 1;2 ;B 2;1;1 . Độ dài đoạn AB bằng A. 2B. C. D. 6 6 2 Câu 4: Cho cấp số cộng un biết u2 3 và u4 7. Gía trị của u15 bằng A. 27B. 31C. 35D. 29 x 2 2 Câu 5: Giới hạn lim bằng x 2 x 2 1 1 A. B. C. 0D. 1 2 4 Câu 6: Điểm nào trong hình vẽ dưới đây là điểm biễu diễn của số phức z 1 i 2 i ? A. PB. MC. ND. O Câu 7: Tập nghiệm bất phương trình log2 x 1 3 là A. ;10 B. C. 1;9 D. 1;10 ;9 Câu 8: Thể tích của khối nón có chiều cao bằng 4 và đường sinh bằng 5 A. 16 B. C. D. 48 12 36 Câu 9: Cho hàm số f x x3 2x, giá trị f '' 1 bằng A. 6B. 8C. 3D. 2 1
  2. Câu 10: Cho khối lăng trụ ABCD.A’B’C’D’ có thể tích bằng 12, đáy ABCD là hình vuông tâm O. Thể tích khối chóp A’.BCO bằng A. 1B. 4C. 3D. 2 2 Câu 11: Với a, b là các số thực dương. Biểu thức loga a b bằng A. 2 loga b B. C. D. 2 loga b 1 2loga b 2loga b 2 2 Câu 12: Tích phân dx bằng 0 2x 1 1 A. 2ln 5 B. C. D.ln 5 ln 5 4ln 5 2 Câu 13: Cho hàm số y f x có bảng biến thiên như sau x 0 2 y' + + y 3 1 Hàm số đã cho đạt cực đại tại A. 2B. 1C. 0D. 3 Câu 14: Hàm số y x3 3x 1 nghịch biến trên khoảng A. 0;2 B. C. 1; D. ; 1 1;1 Câu 15: Trong không gian Oxyz, điểm nào dưới đây nằm trên mặt phẳng P : 2x y z 2 0 A. Q 1; 2;2 B. N C.1; 1;1 D. P 2; 1; 1 M 1;1; 1 3 x a Câu 16: Cho I dx bln 2 cln 3, với a, b, c là các số nguyên. Gía trị của 0 4 2 x 1 3 a b c bằng A. 1B. 2C. 7D. 9 Câu 17: Gía trị lớn nhất của hàm số y x3 2x2 4x 5 trên đoạn 1;3 bằng A. -3B. 0C. 2D. 3 Câu 18: Cho số phức z, biết rằng các điểm biễu diễn hình học của các số phức z, iz và z iz tạo thành một tam giác có diện tích bằng 18. Modun của số phức bằng A. 2 3 B. C. 6D. 9 3 2 Câu 19: Hàm số y log2 2x 1 có đạo hàm y' bằng 2
  3. 2ln 2 2 2 1 A. B. C. D. 2x 1 2x 1 ln 2 2x 1 log 2 2x 1 ln 2 Câu 20: Trong không gian Oxyz, cho 2 mặt phẳng P : x 2y 2z 6 0 và Q : x 2y 2z 3 0. Khoảng cách giữa 2 mặt phẳng (P) và (Q) bằng A. 1B. 3C. 9D. 6 Câu 21: Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA a và vuông góc với mặt đáy ABCD Khoảng cách giữa 2 đường thẳng SC và BD bằng a 3 a 6 a a 6 A. B. C. D. 4 3 2 6 Câu 22: Họ nguyên hàm của hàm số f x x cos 2x là x sin 2x cos2x cos2x A. C B. x sin 2x C 2 4 2 cos2x x sin 2x cos2x C. D.x s in 2x C C 4 2 4 Câu 23: Tập hợp tất cả các điểm biễu diễn các số phức z thõa mãn z 2 i 4là đường tròn có tâm I và bán kính R lần lượt là A. I 2; 1 ,R 4 B. C. D.I 2; 1 ,R 2 I 2; 1 ,R 4 I 2; 1 ,R 2 Câu 24: Tập hợp tất cả các giá trị của tham số m để hàm số y x3 mx2 m 6 x 1 đồng biến trên khoảng 0;4 A. ;6 B. C. D. ;3 ;3 3;6 Câu 25: Cho tập hợp A 1;2;3; ;10 . Chọn ngẫu nhiên ba số từ A. Tìm xác suất để trong ba số chọn ra không có hai số nào là hai số nguyên liên tiếp 7 7 7 7 A. P B. C. P D. P P 90 24 10 15 Câu 26: Có bao nhiêu giá trị nguyên của tham số m để phương trình 4x m.2x 1 2m2 5 0 có hai nghiệm nguyên phân biệt A. 1B. 5C. 2D. 4 e ln x Câu 27: Với cách biến đổi u 1 3ln x thì tích phân dx trở thành 1 x 1 3ln x 2 2 2 2 2 9 2 u2 1 A. u2 1 du B. C. D. u2 1 du 2 u2 1 du du 3 1 9 1 1 2 1 u 3
  4. Câu 28: Cho mặt cầu (S) tâm O và các điểm A, B, C nằm trên mặt cầu (S) sao cho AB 3, AC 4, BC 5 và khoảng cách từ O đến mặt phẳng ABC bằng 1. Thể tích của khối cầu (S) bằng 7 21 13 13 20 5 29 29 A. B. C. D. 2 6 3 6 x x 1 Câu 29: Số tiệm cận ngang của đồ thị hàm số y là x2 1 A. 2B. 1C. 3D. 0 Câu 30: Cho hàm số y f x có bảng biến thiên như sau x 0 2 y' + 0 y 2 1 Tập hợp tất cả các giá trị của tham số m để phương trình f x m 0 có 2 nghiệm phân biệt là A. 2;1 B. C.  1;2 D. 1;2 2;1 Câu 31: Cho A và B là 2 biến cố độc lập với nhau, P A 0,4; P B 0,3. Khi đó P A.B bằng A. 0,58B. 0,7C. 0,1D. 0,12 Câu 32: Cho hình lăng trụ tam giác đều ABC.A’B’C’ có cạnh bằng a và chiều cao bằng 2a. Gọi M, N lần lượt là trung điểm của BC và A’C’ A. 2aB. C. aD. a 3 a 2 Câu 33: Cho bức tường cao 2m, nằm song song vưới tòa nhà và cách tòa nhà 2m. Người ta muốn chế tạo một chiếc thang bắc từ mặt đất bên ngoài bức tường, gác qua bức tường và chạm vào tòa nhà (xem hình vẽ). Hỏi chiều dài tối đa của thang bằng bao nhiêu mét 4
  5. 5 13 A. m B. C. 6m4 D.2m 3 5m 3 Câu 34: Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A và AB a 2. Biết SA vuông góc với ABC và SA a. Góc giữa hai mặt phẳng SBC và ABC bằng A. 30 B. C. D. 45 60 90 Câu 35: Cho hàm số f x x3 3x2 m. Hỏi có bao nhiêu giá trị nguyên của m m 10 để với mọi bộ ba số phân biệt a,b,c 1;3 thì f a ,f b ,f c là ba cạnh của một tam giác A. 4B. 3C. 1D. 2 Câu 36: Phương trình tiếp tuyến của đồ thị hàm số y x4 2x2 1 biết tiếp điểm có hoành độ bằng 1 là A. y 8x 6 B. y C.8x 6 D. y 8x 1 0 y 8x 10 n 0 n 1 1 n 2 2 n n Câu 37: Cho n là số nguyên dương thỏa mãn 3 Cn 3 Cn 3 Cn 1 Cn 2048. Hệ số của x10 trong khai triển x 2 n là A. 11264B. 22C. 220D. 24 Câu 38: Tập hợp tất cả các giá trị của tham số m để phương trình 4x m.2x 1 3m 3 0 có hai nghiệm trái dấu là A. ;2 B. C. 1; D. 1;2 0;2 x 1 y 1 z 1 Câu 39: Trong không gian Oxyz, cho 2 đường thẳng d : và 1 2 1 3 x 2 y z 3 d : . Mặt cầu có một đường kính là đoạn thẳng vuông góc chung của d và 2 1 2 3 1 d2 có phương trình là A. x 4 2 y 2 2 z 2 2 3 B. x 2 2 y 1 2 z 1 2 12 C. D. x Không 2 2 tồny tại1 2 mặt z cầu 1 thỏa2 3 mãn x 1 y 2 z Câu 40: Phương trình đường thẳng song song với đường thẳng d : và cắt 1 1 1 x 1 y 1 z 2 x 1 y 2 z 3 hai đường thẳng d : và d : là 1 2 1 1 2 1 1 3 x 1 y 1 z 2 x 1 y z 1 A. B. 1 1 1 1 1 1 x 1 y 2 z 3 x 1 y z 1 C. D. 1 1 1 1 1 1 5
  6. x2 mx Câu 41: Với tham số m, đồ thị hàm số y có hai điểm cực trị A, B và AB 5. x 1 Mệnh đề nào dưới đây đúng A. m 2 B. C. 0 m 1 D. 1 m 2 m 0 Câu 42: Trong không gian Oxyz, cho hai điểm A 5;0;0 ,B 3;4;0 . Với C là điểm nằm trên trục Oz, gọi H là trực tâm của tam giác ABC. Khi C di động trên trục Oz thì H luôn thuộc một đường tròn cố định. Bán kính đường tròn đó là 5 3 5 A. B. C. D. 3 4 2 2 Câu 43: Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật tâm O,AB a,BC a 3. Tam giác SAO cân tại S, mặt phẳng SAD vuông góc với mặt phẳng ABCD ,góc giữa đường thẳng SD và mặt phẳng ABCD bằng 60. Tính khoảng cách giữa 2 đường thẳng SB và AC a 3 3a a 3a A. B. C. D. 2 2 2 4 Câu 44: Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và B· AD 60. Hình chiếu vuông góc của S trên mặt phẳng ABCD trùng với trọng tâm của tam giác ABC. Góc giữa mặt phẳng SAB và ABCD bằng 60. Khoẳng cách từ điểm B đến mặt phẳng SCD bằng 21a 21a 3 7a 3 7a A. B. C. D. 14 7 14 7 Câu 45: Trong không gian Oxyz, cho tam giác ABC vuông tại C,A· BC 60, AB 3 2. x 3 y 4 z 8 Đường thẳng AB có phương trình , đường thẳng AC nằm trên mặt 1 1 4 phẳng : x z 1 0. Biết B là điểm có hoành độ dương, gọi a;b;c là tọa độ của điểm C, giá trị của a b c bằng A. 3B. 2C. 4D. 7 Câu 46: Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a 3,BD 3a. Hình chiếu vuông góc của B trên mặt phẳng A 'B'C'D' trùng với trung điểm A’C’. Gọi 21 là góc giữa 2 mặt phẳng ABCD và CDD'C' ,cos = . Thể tích của khối hộp 7 ABCD.A 'B'C'D' bằng 6
  7. 3a3 9 3a3 9a3 3 3a3 A. B. C. D. 4 4 4 4 Câu 47: Có bao nhiêu số nguyên dương m sao cho đường thẳng y x mx cắt đồ thị hàm số 2x 1 y tại hai điểm phân biệt A, B và AB 4 x 1 A. 7B. 6C. 1D. 2 Câu 48: Cho các số thực a,b 1 thỏa mãn điều kiện log2a log3 b 1 Tìm giá trị lớn nhất của biểu thức P log3a log2 b A. B.l og2 3 log3 2 log3 2 log2 3 1 2 C. D. log2 3 log3 2 2 log2 3 log3 2 x 2 Câu 49: Phương trình tiếp tuyến của đồ thị hàm số y biết tiếp tuyến đó cắt trục tung 2x 3 và trục hoành tại hai điểm phân biệt A, B sao cho tam giác OAB cân là A. y x 2 B. y C. x 2 D. y x 2 y x 2 Câu 50: Cho hàm số y ax4 bx2 c có đồ thị C , biết rằng C đi qua điểm A 1;0 tiếp tuyến d tại A của C cắt C tại 2 điểm có hoành độ lần lượt là 0 và 2, diện tích hình 28 phẳng giới hạn bởi d, đồ thị C và 2 đường thẳng x 0;x 2 có diện tích bằng (phần 5 gạch chéo trong hình vẽ) Diện tích hình phẳng giới hạn bởi d, đồ thị C và 2 đường thẳng x 1;x 0 có diện tích bằng 2 1 2 1 A. B. C. D. 5 9 9 5 7
  8. Tổ Toán – Tin MA TRẬN TỔNG QUÁT ĐỀ THI THPT QUỐC GIA MÔN TOÁN 2018 Mức độ kiến thức đánh giá Tổng số STT Các chủ đề Nhận Thông Vận Vận dụng câu hỏi biết hiểu dụng cao 1 Hàm số và các bài toán 4 4 3 11 liên quan 2 Mũ và Lôgarit 2 1 2 5 3 Nguyên hàm – Tích 2 2 1 1 6 phân và ứng dụng Lớp 12 4 Số phức 1 1 1 3 ( %) 5 Thể tích khối đa diện 1 2 2 2 7 6 Khối tròn xoay 1 1 2 8
  9. 7 Phương pháp tọa độ 2 2 3 1 8 trong không gian 1 Hàm số lượng giác và phương trình lượng giác 2 Tổ hợp-Xác suất 1 1 1 3 3 Dãy số. Cấp số cộng. 1 1 Cấp số nhân 4 Giới hạn 1 1 5 Đạo hàm 1 1 2 Lớp 11 ( %) 6 Phép dời hình và phép đồng dạng trong mặt phẳng 7 Đường thẳng và mặt phẳng trong không gian Quan hệ song song 8 Vectơ trong không gian Quan hệ vuông góc trong không gian Khác 1 Bài toán thực tế 1 1 Tổng Số câu 17 15 13 5 50 Tỷ lệ 34% 30% 26% 10% Đáp án 1-D 2-A 3-B 4-D 5-B 6-D 7-B 8-C 9-A 10-A 11-B 12-C 13-C 14-D 15-B 16-A 17-C 18-C 19-B 20-B 21-D 22-D 23-A 24-C 25-D 26-A 27-B 28-D 29-B 30-A 31-D 32-A 33-B 34-B 35-D 36-A 37-B 38-C 39-D 40-B 9
  10. 41-B 42-A 43-D 44-C 45-C 46-C 47-D 48-A 49-A 50-D LỜI GIẢI CHI TIẾT Câu 1: Đáp án D Câu 2: Đáp án A 1 f x dx 2x sin 2x dx x2 cos2x C 2 Câu 3: Đáp án B AB 2 1 2 1 1 2 1 2 2 6 Câu 4: Đáp án u4 u1 3d 7 d 2 Ta có u15 u1 14d 29 u2 u1 d 3 u1 1 Câu 5: Đáp án B x 2 2 x 2 2 x 2 2 1 1 lim lim lim x 2 x 2 x 2 x 2 x 2 2 x 2 x 2 2 4 Câu 6: Đáp án D Ta có z 2 i 2i i2 3 i số phức z biểu diễn Q 3;1 Câu 7: Đáp án B Bất phương trình đã cho 0 x 1 23 1 x 9 Câu 8: Đáp án C Bán kính đáy khối nón là 52 42 3. 1 Thể tích khôi nón là V 32.4 12 3 Câu 9: Đáp án A f ' x 3x2 2 f '' x 6x f '' 1 6 Câu 10: Đáp án A Ta có 1 VA'.BCO d A '; BCO .SBCO 3 1 1 1 d A '; ABCD . SABCD .12 1 3 4 12 Câu 11: Đáp án B 10
  11. 2 2 loga a b loga a loga b 2 loga b Câu 12: Đáp án C 2 2 2 2 2 dx d 2x 1 ln 2x 1 ln 5 |0 0 2x 1 0 2x 1 Câu 13: Đáp án C Câu 14: Đáp án D Ta có y' 3x2 3x y' 0 1 x 1 Suy ra hàm số nghich biến trên khoảng 1;1 Câu 15: Đáp án B Câu 16: Đáp án A 2 2 2 3 2 x 0 t 1 t 1 t t Đặt t x 1 t x 1 2tdt dx; I 2tdt dt x 3 t 2 1 4 2t 1 t 2 2 a 7 2 3 2 6 t 2 7 t 2t 3 dt t 3t 6ln x 2 12ln 2 6ln 3 b 12 a b c 1 t 2 3 3 1 1 c 6 Câu 17: Đáp án C x 2 Ta có y' 3x2 4x 4 y' 0 2 x 3 Suy ra y 1 0, y 2 3, y 3 2 max y 2 1;3 Câu 18: Đáp án C Gọi A x; y ,B x; y ,C x y;x y là các điểm biểu diễn 3 số phức theo đề bài Ta có AB x y 2 x y 2 2 2 AC y x BC x2 y2 AB2 BC2 AC2 1 1 2 2 2 2 Suy ra tam giác ABC vuông tại C SABC .AC.BC x y 18 x y 6 z 2 2 Câu 19: Đáp án B Câu 20: Đáp án B 11
  12. 0 2.0 2. 3 3 Lấy điểm A 0;0; 3 P d P ; Q d A; Q 3 12 22 2 2 Câu 21: Đáp án D BD  AC Vì BD  SAC BD  SC BD  SA Gọi H là hình chiếu vuông góc của I lên SC IH là đoạn vuông góc chung của SC và BD a 2 Ta có AC a 2 a 2 a 2,IC ,SC a 2 2a 2 a 3 2 Xét 2 tam giác vuông đồng dạng CIH và CSA, ta có a 2 CI IH IH a 6 2 IH CS SA a 3 a 6 Câu 22: Đáp án D du dx u x Đặt 1 dv cos2xdx v sin 2x 2 1 x sin 2x 1 x sin 2x cos2x x cos 2x dx sin 2xdx C 2 2 2 2 4 Câu 23: Đáp án A Đặt z x yi;x, y ¡ x yi 2 i 4 x 2 y 1 i 4 x 2 2 y 1 2 16 Tập hợp tất cả các điểm biễu diễn các số phức z thỏa mãn z 2 i 4 là đường tròn có tâm I và bán kính R lần lượt là I 2; 1 ,R 4 Câu 24: Đáp án C Ta có y' 3x2 2mx m 6 Hàm số đồng biến trên 0;4 y' 0,x 0;4 12
  13. 3x2 6 3x2 2mx m 6 0 m ,x 0;4 1 2x 1 2 3x2 6 6 x x 2 x 1 Xét hàm số f x ,x 0;4 f ' x 2 f ' x 0 2x 1 2x 1 x 2 Ta có bảng biến thiên như sau x 0 1 4 f ' x - 0 + f x 6 6 3 Từ bảng biến thiên ta thấy f x 3 1 m 3 m ;3 0;4 Câu 25: Đáp án D 3 Chon 3 số bất kì có C10 120 cách TH1: 3 số chọn ra là 3 số tự nhiên liên tiếp có 8 cách TH2: 3 số chọn ra là 2 số tự nhiên liên tiếp +) 3 số chọn ra có cặp 1;2 hoặc 9;10 có 2.7 14 cách +) 3 số chọn ra có cặp 2;3 , 3;4 8;9  có 6.6 36 cách 120 8 14 36 7 Vậy xác suất cần tìm là 120 15 Câu 26: Đáp án Đặt t 2x PT t2 2m.t 2m2 5 0 1 Phương trình ban đầu có 2 nghiệm phân biệt 1 có 2 nghiệm dương phân biệt ' 0 m2 2m2 5 0 Suy ra t1 t2 0 2m 0 2 t1t2 0 2m 5 0 5 m 5,m 0 10 m 10 2 m 5 1,58 m 2,14 2 10 m 2 Câu 27: Đáp án B 2 3 x 1 u 1 Ta có u 1 3ln x u 1 3ln x 2udu dx, x x e u 2 13
  14. u2 1 e ln x e 2 2 2 Suy ra dx 3 udu u2 1 du 1 x 1 3ln x 1 u 3 9 1 Câu 28: Đáp án D Vì 52 32 22 nên tam giác ABC vuông tại A , bán kính đường tròn ngoại tiếp tam giác BC 5 ABC là r 2 2 2 2 2 5 2 29 Bán kính khối cầu (S) là R r h 1 2 2 3 4 3 4 29 29 29 Thể tích khối cầu V R 3 3 2 6 Câu 29: Đáp án B TXD: D 1; x x 1 lim y lim 1 hàm số có TCN y 1 x x x2 1 Câu 30: Đáp án A phương trình f x m 0 có 3 nghiệm phân biệt 1 m 2 2 m 1 Câu 31: Đáp án D Do A và B là 2 biến cố độc lập với nhau nên P A.B P A .P B 0,12 Câu 32: Đáp án A Ta có d AM;B' N d ABC;A 'B'C' AA ' 2a Câu 33: Đáp án B Đặt C· EF A· ED 90 DE EF KHI ĐO AE ;EC cos 90 cos Do đó 14
  15. 2 2 8 8 AC 4 2 sin cos sin cos 2 sin 4 Câu 34: Đáp án B AE  BC Dựng BC  SEA BC  SA Do đo góc giữa 2 mặt phẳng SBC và ABC bằng S· EA BC Ta có AE a;SA a S· EA 45 2 Câu 35: Đáp án D f ' x 3x2 6x 0 x 2 với x 1;3 f 1 m 2;f 2 m 4;f 3 m min f x m 4 1;3 Để với mọi bộ ba số phân biệt a,b,c 1;3 thì f a ,f b ,f c là ba cạnh của một tam giác 10 m 4 10 m 4 thì 10 m 8 m 8;9 f a f b f c a,b,c 1;3 2 m 4 m Câu 36: Đáp án A Ta có y' 4x3 4x y' 1 8, y' 1 2 PTTT:y 8 x 1 2 8x 6 Câu 37: Đáp án B n 0 n 1 n 1 2 n 2 n n 0 Xét khai triển x 1 Cn x Cnc Cn x 1 Cn x n 0 n 1 1 n 2 2 n n Chọn x 3 3 Cn 3 Cn 3 Cn 1 Cn 2048 n 11 10 n 10 Hệ số của x trong khai triển x 2 là C11.2 22 Câu 38: Đáp án C Đặt t 2x 0 t2 2m 3 0 ' m2 3m 3 0 Điều kiện phương trình có 2 nghiệm phân biệt là S 2m 0 m 1 P 3m 3 0 15
  16. x1 2 t1 Khi đó x1 log2 t1;x2 log2 t2 x2 2 t2 Để x1x2 0 0 t1 1 t2 t1 1 t2 1 0 t1t2 t1 t2 0 3m 3 2m 1 m 2 0 m 2 Vậy m 1;2 Câu 39: Đáp án D Gọi A 1 2t; 1 t; 1 3t d 1 B 2 u;2u;3 3u  Khi đó AB 3 u 2t;2u t;4 3u 3t   1 u AB.u1 0 2 3 u 2t 1 2u t 3 4 3u 3t 0 3 Ta có   AB.u 0 1 3 u 2t 2 1 2u t 3 4 3u 3t 0 5 2 t 3 7 2 7 2 7 2 Suy ra A ; ;4 ,B ; ;4 d1 cắt d2 tại điểm ; ;4 do đó không tồn tại mặt cầu 3 3 3 3 3 3 thỏa mãn Câu 40: Đáp án B Gọi A 1 2t; 1 t;2 t d1;B 1 u;2 u;3 3u d2  AB 2 u 2t;3 u t;1 3u t 2 u 2t 3 u t 1 3u t t 1 do AB / /d 1 1 1 u 1 x 1 y z 1 : 1 1 1 Câu 41: Đáp án B x2 2x m Ta có y' ,x 1. x 1 2 Phương trình y' 0 x2 2x m 0 * Để đồ thị hàm số có 2 điểm cực trị y' 0 có 2 nghiệm phân biệt khác 1 m 1 Khi đó gọi A x1; y1 ,B x2 ; y2 là 2 điểm cực trị của đồ thị hàm số   y1 2x1 m Suy ra AB x2 x1; y2 y1 mà AB x2 x1;2x2 2x1 y2 2x2 m 2 2 2 Do đó AB 5 x2 x1 5 x1 x2 5 x1 x2 4x1.x2 5 (1) 16
  17. Theo hệ thức viet cho phương trình (*) ta được x1 x2 2;x1.x2 m (2) 2 1 Từ (1) và (2) suy ra 2 4m 5 m (thỏa mãn dk) 4 ax2 bx c Chú ý: Đồ thị hàm số y có đường thẳng đi qua 2 điểm cực trị là dx e ax2 bx c ' y dx e ' Câu 42: Đáp án A Gọi K là trực tâm của tam giác OAB Và M là trung điểm của AB OM  AB vì tam giác OAB cân Mà H là trực tâm của tam giác ABC HK  ABC Suy ra HK  HM H thuộc đường tròn đường kính KM x 4t Ta có trung điểm M của AB là M 4;2;0 OM : y 2t z 0 Lại có K OM K 4t;2t;0 AK 4t 5;2t;0   3 3 Suy ra AK.OB 0 3 4t 5 4.2t 0 t K 3; ;0 4 2 KM 5 Vậy bán kính đường tròn cần tính R 2 4 Câu 43: Đáp án D Gọi H là hình chiếu vuông góc của S trên mặt phẳng (ABCD) Ta có SA SO SHA SHO c g c HA HO H· AO 30 a 2a HAO cân tại H, có HA HD OA a 3 3 Xác định góc S·D; ABCD S· DH 60 SH 2a Qua B kẻ đường thẳng d / /AC,K là hình chiếu của H trên d AC / / SBK d SB;AC d AC; SBK d A; SBK d H;d 4 3 Mặt khác d A; SBK d H; SBK d A;d 3 4 3 SH.HK 3a 3a Vậy d A; SBK d SB;AC 4 SH2 HK2 4 4 17
  18. Câu 44: Đáp án C Gọi I là trọng tâm của tam giác ABC, H là hình chiếu vuông góc của I trên AB ·SAB ; ABCD S·H;HI S· HI 60 1 1 a 3 a 3 a 3 a Mà IH d C; AB SI tan 60. 3 3 2 6 6 2 Kẻ IK  CD;IE  SK IE  SCD d I; SCD IE 2 2 a 3 a 3 SI.IK a 7 Mà IK d B; CD IE 3 3 2 3 SI2 IK2 7 3 3a 7 Vậy d B; SCD d I; SCD 2 14 Câu 45: Đáp án C Vì AB giao mặt phẳng tại A A 1;2;0  Điểm B AB B t 3;t 4; 4t 8 AB t 2;t 2; 4t 8 2 2 2 t 1 Mà AB 3 2 AB 18 2 t 2 4t 8 18 B 2;3; 4 t 3 Gọi H là hình chiếu của B trên 2 4 1 3 2 Khi đó BH d B; 2 2 AB 3 2 3 2 Vì BC 3 2cos60 · ABC 60 2 Và BHC vuông tại H và BC là cạnh huyền BH BC 3 2 Mà BH BC H  C C là hình chiếu của B trên mặt phẳng 2 x 2 t 7 5 phương trình BC y 3 C  BC  C ;3; a b c 4 2 2 z 4 t Câu 46: Đáp án C Vì CDD'C' / / ABB'A ' ·ABCD ; CDD'C' ·ABCD ; ABB'A ' B'D' 3a 2 2 B'D' a 3 Ta có AM A 'B' A 'C' a 3 A 'B'C' đều A 'B' a 3 2 2 Gọi H, K lần lượt là hình chiếu của C’, M trên A 'B' 1 1 A 'B'. 3 3a MK C'H MK . 2 2 2 4 18
  19. A 'B'  MK · Lại có A 'B'  BMK A 'B'  BK ABCD ; ABB'A ' B· KM A 'B'  BM 1 3a a 3 Xét tam giác BKM vuông tại M, ta có BM tan B· MK.MK 1. cos2 4 2 2 a 3 3 a 3 9a3 khi đó V S .BM 2S .BM 2 . ABCD.A'B'C'D' A'B'C'D' A'B'C' 4 2 4 Câu 47: Đáp án D x 1 2x 1 Phương trình hoành độ giao điểm x m x2 m 1 x m 1 0 x 1  f x Để C cắt d tại 2 điểm phân biệt f x 0 có 2 nghiệm phân biệt khác m 3 2 3 1 m 3 2 3 Khi đó, gọi A x1;x1 m ,B x2 ;x2 m là giao điểm của C cắt d x1 x2 1 m 2 2 Theo hệ thức viet ta có x1 x2 4x1.x2 m 6m 3 1 x1.x2 m 1 2 2 2 Do đó AB 4 AB 16 2 x1 x2 16 x1 x2 4x1.x2 8 2 2 m 1 TỪ 1 , 2 suy ra 0 m 6m 3 8, kết hợp với m ¢  m 7 Câu 48: Đáp án A log3 a log2 a.log3 2 Ta có log2 a log3 a.log2 3 Suy ra P log3 2. log2 a log2 3. log3 b 2 P log3 2 log2 3 log2 a log3 b log3 2 log2 3 (bdt Bunhiacopxki) P log3 2 log2 3. Vậy giá trị lớn nhất là log3 2 log2 3 Câu 49: Đáp án A 1 3 Ta có y' 0,x tiếp tuyến của đồ thị (C) đều có hệ số góc âm 2x 3 2 2 x b Phương trình tiếp tuyến của (C) có dạng 1 với A a;0 ,B 0;b a y 19
  20. a b Tam giác OAB cân OA OB a b a b x y Mà d phải có hệ số góc âm nên a b d : 1 y x a a a 1 x 2 y 2 0 Suy ra k 2 1 a 2. 2x 3 x 1 y 1 1 Vậy d : y x 2 Câu 50: Đáp án D Điểm A 1;0 thuộc đồ thị hàm số C a b c 0 Phương trình tiếp tuyến tại A 1;0 là d : y y' 1 x 1 4a 2b x 1 Phương trình hoành độ giao điểm của (*) suy ra 4a 2b x 1 ax4 bx2 c * 4a 2b c Mà x 0, x 2 là nghiệm của (*) suy ra 1 12a 6b 16a 4b c 2 28 4 2 32 8 28 Và 4a 2b x 1 ax bx c dx 4 4a 2b a b 2c 2 5 0 3 3 5 Từ 1 , 2 suy ra a 1,b 3,c 2  y x4 3x2 2 2 1 Vậy diện tích cần tính là S 2x 2 x4 3x2 2dx 0 5 20