13 Bài toán thực tế môn Toán Lớp 12 - Văn Phú Quốc

docx 7 trang nhatle22 2360
Bạn đang xem tài liệu "13 Bài toán thực tế môn Toán Lớp 12 - Văn Phú Quốc", để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên

Tài liệu đính kèm:

  • docx13_bai_toan_thuc_te_mon_toan_lop_12_van_phu_quoc.docx

Nội dung text: 13 Bài toán thực tế môn Toán Lớp 12 - Văn Phú Quốc

  1. Câu 1: (Gv Văn Phú Quốc 2018) Một con đường được xây dựng giữa hai thành phố A và B, hai thành phố này bị ngăn cách bởi một con sông. Người ta cần xây một cây cầu bắc qua sông và vuông góc với bờ sông. Biết rằng thành phố A cách bờ sông một khoảng bằng 1 km, thành phố B cách bờ sông một khoảng bằng 4 km, khoảng cách giữa hai đường thẳng đi qua A,B và vuông góc với bờ sông là 10 km (hình vẽ). Hãy xác định vị trí xây cầu để tổng quãng đường đi từ thành phố A đến thành phố B là nhỏ nhất. A. CM 10 km. B. C. D. CM 1 km. CM 2 km. CM 2,5 km. Đáp án C Đặt CM x (với 0 x 10 ) thì DN 10 x Khi đó AM x2 1 và BN BN 10 x 2 16 x2 20x 116 . Tổng quảng đường đi từ thành phố A đến thành phố B là AM MN BN Do MN không đổi nên tổng quảng đường nhỏ nhất khi và chỉ khi AM BN x2 1 x2 20x 116 nhỏ nhất. Xét hàm số f x x2 1 x2 20x 116 với x 0;10 . x x 10 Ta có f ' x . x2 1 x2 2x 116 Khi đó f ' x 0 x x2 2x 116 10 x x2 1 x2 x2 20x 116 x2 20x 100 x2 1 16x2 x2 20x 100 15x2 20x 100 0 10 x ; x 2 3 Do x 0;10 nên ta chọn x 2 . Ta có f 0 11; f 2 5 5; f 10 2 101. Suy ra min f x 5 5 x 2. x 0;10 Vậy CM 2 km. Câu 2: (Gv Văn Phú Quốc 2018) Một nông dân muốn rào lại bãi cỏ hình chữ nhật dọc một con sông, cạnh dọc sông không cần phải rào. Ông có 1000m lưới sắt để rào. Tính diện tích bãi cỏ lớn nhất mô tả ở trên có thể rào được.
  2. A. 125 m2.B. 1250 m 2.C. 12500 m 2.D. 125000 m 2. Đáp án D Gọi x là chiều rộng bãi cỏ thì chiều dài bãi cỏ sẽ là 1000 2x . Khi đó diện tích bãi cỏ là: (Gv Văn Phú Quốc 2018) S x 1000 2x 1000x 2x2 . Ta có S x 1000 4x 0 x 250 . Vậy max S S 250 125000 m2 . Câu 3: (Gv Văn Phú Quốc 2018) Một đường dây điện nối một nhà máy điện từ A đến một hòn đảo tại C. Khoảng cách ngắn nhất từ C đến B là 1 km. Khoảng cách từ B đến A là 4. Mỗi km dây điện đặt dưới nước mất 5000 USD, còn đặt dưới đất là 3000 USD. Hỏi điểm S trên bờ cách A bao nhiêu để khi mắc dây điện từ A qua S rồi đến C ít tốn kém nhất? 11 13 15 17 A. km. B. C. D. km. km. km. 4 4 4 4 Đáp án B Gọi x là khoảng cách từ S đến B. Khi đó khoảng cách từ S đến A là 4 x 0 x 4 . Chi phí mắc dây điện từ A qua S rồi đến C là: (Gv Văn Phú Quốc 2018) f x 5000 1 x2 3000 4 x 5000x 5x 3 1 x2 f ' x 3000 1000 2 2 1 x 1 x 3 f ' x 0 x . 4 5000 3 f ' x 3 0,x f '' 0. 1 x2 4 13 3 Do đó min f x x . x 0; 4 4 13 Vậy để chi phí ít tốn kém nhất thì S phải cách A là km. 4 Câu 4: (Gv Văn Phú Quốc 2018) Để đo độ phóng xạ của một chất phóng xạ  , người ta dùng một máy đếm xung. Khi chất này phóng xạ ra các hạt  , các hạt này đập vào máy và khi đó, trong máy xuất hiện một xung điện và bộ đếm tăng thêm 1 đơn vị. Ban đầu máy đếm được 960 xung trong vòng một phút nhưng sau đó 3 giờ chỉ còn 120 xung trong một phút (với cùng điều kiện). Hỏi chu kì bán rã của chất này là bao nhiêu giờ? A. 0,5 giờ.B. 1 giờ.C. 1,5 giờ.D. 2 giờ.
  3. Đáp án B Gọi N1 là số hạt  được phóng ra trong khoảng thời gian t1 kể từ thời điểm ban đầu. k t1 Ta có N1 N01 N1 N01 1 e với N01 là số hạt phóng xạ  ban đầu. 3k Sau 3 giờ, số nguyên tử còn lại trong chất phóng xạ là N02 N01.e . Kể từ thời điểm này, trong khoảng thời gian t2 thì số hạt  tạo thành là k t2 N2 N02 N01 N02 1 e . Cho t1 t2 1 phút thì theo giả thiết, ta có N1 960, N2 120 . Khi đó N 120 1 e 3k e 3k 8 1 e 3k k ln 2 . N2 960 k Vậy T 1 (giờ) là chu kỳ bán rã của chất phóng xạ. ln 2 Câu 5: (Gv Văn Phú Quốc 2018) Chu kì bán rã của Cacbon 14 C là khoảng 5730 năm. Người ta tìm một mẫu đồ cổ một lượng Cacbon và xác định nó đã mất 25% lượng Cacbon ban đầu của nó. Hỏi mẫu đồ cổ đó có tuổi là bao nhiêu? (lấy gần đúng). A. 2376 năm.B. 2377 năm.C. 2378 năm.D. 2379 năm. Đáp án C Giả sử tại thời điểm ban đầu mẫu đồ cổ có chứa khối lươgnj Cacbon là m0 và tại thời điểm t (tính từ thời điểm ban đầu), khối lượng đó là m t thì ta có ln 2 ln 2 t t 5730 5730 m t m0.e 75%m0 m0 t 2378 (năm). Câu 6: (Gv Văn Phú Quốc 2018) Giả sử một hàm chỉ mức sản xuất của một hang DVD trong một ngày là y bx trong đó m là số lượng nhân viên và n là số lượng lao động chính. Mỗi ngày hang phải sản xuất được 40 sản phẩm để đáp ứng nhu cầu khách hàng. Biết rằng tiền lương cho nhân viên là 16 USD và của một lao động chính là 27 USD. Hãy tìm giá trị nhỏ nhất chi phí trong một ngày của hang sản xuất này A. 1000 USDB. 1440 USDC. 1500 USDD. 1550 USD Đáp án B Gọi C là chi phí mỗi ngày. Khi đó C 16m 27n (USD) Do hàm sản xuất phải đạt chỉ tiêu 40 sản phẩm trong mỗi ngày nên 2 1 403 m 3b3 40 m2n 403 n m2 Biểu thức biểu diễn mối liên hệ giữa số lượng nhân viên và chi phí kinh doanh là
  4. 27.403 C 16m m2 Áp dụng bất đẳng thức Cauchy ta có 27.403 27.403 C 16m 8m 8m 1440 m2 m2 27.403 8m m2 m 60 Vậy C 1400 (USD) khi và chỉ khi (có 60 nhân viên và lao động 403 n 18 n m2 xấp xỉ 18 người) Câu 7: (Gv Văn Phú Quốc 2018) Cường độ ánh sáng đi qua một môi trường khác không khí, chẳng hạn như nước, sương mù, sẽ giảm dần tùy theo độ dày của môi trường và một hằng x số  gọi là khả năng hấp thụ tùy thuộc môi trường theo công thức sau I I0e với x là độ dày của môi trường đó, tính bằng mét. Biết rằng nước biển có  1, .4 Tính cường độ ánh sáng giảm đi từ 2 m xuống đến 10m A. 8,7947.1010 lầnB. 8,7497. 1lần010C. 8,7 7lần94D 1 010 lần8,7479.1010 Đáp án A Theo công thức đã cho thì cường độ ánh sáng thay đổi khi đi từ độ sai h1 đến h2 là I I .e h1 1 0 e  h2 h1 h2 I2 I0.e Do đó khi đi từ độ sau 2m xuống độ sau 20 m thì cường độ ánh sáng giảm đi e1,4 20 2 e25,2 8,7947.1010 lần Giá trị này rất lơn chứng tỏ ở độ sâu 20 m dưới mặt nước biển gần như không có ánh sáng được chiếu tới Câu 8: (Gv Văn Phú Quốc 2018) Một trang chữ của một quyển sách toán cần diện tích 384 cm2 . Lề trên, lề dưới là 3 cm; lề phải, lề trái 2cm. Tính kích thước tối ưu cho trang giấy. A. 50 cm và 40 cmB. 40 cm và 30 cm C. 30 cm và 20 cmD. 20 cm và 10 cm Đáp án C Gọi x, y 0 là khích thước hai trang chữ, Khi đó, hai kích thước của trang giấy là x 6 và y 4 384 Theo đề xy 384 y x
  5. Diện tích của trang giấy 384 2304 S x 6 y 4 x 6 4 4x 408 x x Lập bảng biến thiên dễ dàng suy ra min S 600 x 24 . Suy ra y 16 x 0; Do đó x 6 30 cm và y 4 20 cm là kích thước tối ưu cho trang giấy Câu 9: (Gv Văn Phú Quốc 2018) Một công ty đang lập kế hoạch cải tiến sản phẩm và xác 2 định rằng tổng chi phí dành cho việc cải tiến là C x 2x 4 x 6 trong đó x là số x 6 sản phẩm được cải tiến. Tìm số sản phẩm mà công ty cần cải tiến để tổng chi phí là thấp nhất A. 10B. 9C. 8D. 7 Đáp án D 2x2 24x 70 Ta có C ' x x 6 2 x 5 C ' x 0 So điều kiện x 6 , chọn x 7 x 7 Câu 10: (Gv Văn Phú Quốc 2018) Một công ty bất động sản có 50 căn hộ cho thuê. Biết rằng nếu cho thuê mỗi căn hộ giá 2.000.000 đồng một tháng thì mọi căn hộ đều có người thuê và cứ mỗi lần tăng giá cho thuê mỗi căn hộ 100.000 đồng một tháng thì có thêm hai căn hộ bị bỏ trống. Hỏi muốn có thu nhập cao nhất, công ty đó phải cho thu mỗi căn hộ với giá bao nhiêu một tháng? A. 2.250.000 đồng/thángB. 2.350.000 đồng/tháng C. 2.450.000 đồng/thángD. 3.000.000 đồng/tháng Đáp án A Giả sử giá thuê mỗi căn hộ là 2000000 10000x (đồng/tháng). Khi đó, theo đề bài số căn hộ bị bỏ trống là 2x và số căn hộ được thuê là 50 2x . Do đó số tiền công ty thu được mỗi tháng là S 2000000 100000x 50 2x 200000 20 x 25 x Để công ty thu được nhiều lợi nhuận nhất, ta cần tìm x 0;25 sao cho hàm số f x 20 x 25 x đạt giá trị lớn nhất 5 Ta có f ' x 5 2x; f ' x 0 x 2 2025 5 Lập bảng biến thiên ta thu được max f x x x 0;25 4 2 Khi đó, giá thuê cho mỗi căn hộ là 5 2000000 100000. 2250000 (đồng/tháng) 2
  6. Câu 11: (Gv Văn Phú Quốc 2018) Thể tích V của 1kg nước ở nhiệt độ T 0 T 30 được cho bởi công thức V 999,87 0,06426T 0,0085043T 2 0,0000679T 3 cm3 . Ở nhiệt độ nào nước có khối lượng riêng lớn nhất? A. T 3,9665 C .B. T 4,9665 C .C. T 5,9665 .D.  C T 6,9 .665 C Đáp án A Xét hàm số V T 999,87 0,06426T 0,0085043T 2 0,0000679T 3 với T 0;30 . V T 0,06426 0,0170086T 2,037.10 4T 2 . T 2,9665 V T 0 . Do T 0;30 nên loại nghiệm T 79,5317 . T 79,5317 Lập bảng biến thiên và suy ra V đạt giá trị nhỏ nhất tại T 3,9665 . Câu 12: (Gv Văn Phú Quốc 2018) Một hộp đựng quả bóng tennis được thiết kế có dạng hình trụ sao cho đáy hộp là đường tròn bằng với đường tròn lớn của quả bóng và chứa đúng 5 quả bóng (khi đậy nắp hộp thì nắp hộp tiếp xúc với quả bóng trên cùng). Cho biết chiều cao của hộp là 25 cm. Tính diện tích một quả bóng tennis. A. S 25 cm2 B. C. D. S 25 cm2 S 50 cm2 S 100 cm2 Đáp án B 25 Đường kính quả bóng tennis là 2R 5 . 5 2 2 5 2 Diện tích quả bóng S 4 R 4 . 25 cm 2 Câu 13: (Gv Văn Phú Quốc 2018) Một hợp đựng Chocolate bằng kim loại có hình dạng lúc mở nắp như hình vẽ dưới đây. Một phần tư thể tích phía trên của hộp được dải một lớp bơ sữa ngọt, phần còn lại phía dưới chứa đầy chocolate nguyên chất. Với kích thước như hình vẽ, gọi x x0 là giá trị làm cho hộp kim loại có thể tích lớn nhất, khi đó thể tích chocolate nguyên chất có giá trị là V0 . Tìm V0 . 64 A. 48 đvtt.B. 16 đvtt.C. 64 đvtt.D. đvtt. 3 Đáp án A Ta có V 6 x 12 2x x 2x x 6 2 2x x2 12x 36 2x3 24x2 72x . Xét hàm số f x 2x3 24x2 72x trên 0;6
  7. 2 x 6 f x 6x 48x 72; f x 0 x 2 Khi đó max f x f 2 64 đvtt. Đến đây nhiều bạn vội vã khoanh C mà không đắn đo gì. 0;6 Tuy nhiên, nếu vội vã như vậy là bạn đã sai, bởi đề bài yêu cầu tìm thể tích Chocolate nguyên 1 3 chất mà không phải là thể tích hộp do đó ta cần. Tức là 1 thể tích hộp, tức là 4 4 3 .64 48 (đvtt). 4